数据驱动开发_开发数据驱动的股票市场投资方法

数据驱动开发

Data driven means that your decision are driven by data and not by emotions. This approach can be very useful in stock market investment. Here is a summary of a data driven approach which I have been taking recently

数据驱动意味着您的决定是由数据而非情感驱动的。 这种方法在股票市场投资中非常有用。 这是我最近采用的数据驱动方法的摘要

停止按库存分析库存 (Stop analysing stock by stock)

Being a data scientist, the one thing which I do not like about existing stock market tools is that the analysis is done in a very crude way. The analysis has still to be done for each stock symbol. Something like this

作为数据科学家,我不喜欢现有的股票市场工具的一件事就是分析是非常粗略的。 必须对每个股票代号进行分析。 像这样

Choose a stock, Analyse it, decide on buy/sell

选择股票,进行分析,决定购买/出售

Go to second stock, Analyse it, decide on buy/sell

转到第二只股票,进行分析,决定买入/卖出

Go to third stock, Analyse it, decide on buy/sell

转到第三只股票,进行分析,决定买入/卖出

etc…

等等…

Image for post
Analysing stock by stock — a very cumbersome way
按库存分析库存—非常麻烦

This forces you to choose stock in first place. And the way you choose the stock is based on intuition or news you read about the stock. So there is already some bias introduced in the selection process.

这迫使您首先选择库存。 选择股票的方式是基于您对股票的直觉或新闻。 因此,在选择过程中已经引入了一些偏见。

The approach which I am using is top-down. Take all possible stocks and then analyse all together

我使用的方法是自上而下的。 盘点所有可能的股票,然后一起分析

Image for post
Data driven approach — Analyse all stocks in one go
数据驱动的方法—一口气分析所有股票

This way I do not have to think of selection of a particular stock in one place. I just take all stock symbols and analyse all together. Shown here is analysing all stock of CAC40 (French Stock Market)

这样,我不必在一个地方考虑​​选择特定股票。 我只考虑所有股票代码并一起分析。 此处显示的是分析CAC40(法国股票市场)的所有库存

Image for post

What I get is graph of all stocks together.

我得到的是所有股票的图表。

Image for post
All stocks are shown together
所有股票一起显示

This saves me immense amount of time. Earlier I used to spent hours to get the visualisation for 40 stocks. Now I can get visualisation for 40 stocks in matter of seconds

这为我节省了大量时间。 早些时候,我曾经花了几个小时来获得40只股票的可视化。 现在,我可以在几秒钟内获得40只股票的可视化

仪表板风格在同一视线中呈现多种视觉效果 (Dashboard style multiple visualisations in same sight)

For those who have been in data profession, know the importance of dashboards which gives multiple visualisations to see at the same time. It helps you make better decisions.

对于那些从事数据行业的人来说,了解仪表板的重要性是可以同时看到多个可视化内容的。 它可以帮助您做出更好的决策。

This approach is very suitable for stock analysis, as one has to focus on multiple technical indicators.

这种方法非常适合于库存分析,因为它必须关注多个技术指标。

Image for post
Multiple visualisation for same stock symbol
同一股票代号的多个可视化

The above is a good example on power of “seeing” multiple visualisations at same time. The moving average shows an uptrend. However the candlestick graph shows loss in momentum. So there might be a downward trend which might be starting, so would be better to stay away from this stock

上面的示例很好地展示了同时“看到”多个可视化效果的能力。 移动平均线显示上升趋势。 但是,烛线图显示了动量损失。 因此,可能会有开始下降的趋势,因此最好远离该库存

根据各种标准进行排序 (Sorting based on various criterions)

The sorting functionality is key for any data driven approach. So in my approach I have developed sorting based on various criterions such as Trend, Difference with Moving average etc..

排序功能是任何数据驱动方法的关键。 因此,在我的方法中,我根据各种标准(例如趋势,与移动平均线的差异等)开发了排序。

Just by sorting based on Trend High to low, surfaces “safe or less risky” stocks at the top

仅根据趋势从高到低排序,顶部的“安全或风险较小”的库存

Image for post
Sorting by Trend
按趋势排序

As you can see that CAP.PA surfaces to the top as it has been top trending since long time. This can be confirmed by its upward climbing moving average line. Now that is being data driven. Let data tell you the nature of the stock rather than deciding based on any intuitions

如您所见,CAP.PA一直处于顶部趋势,因为长期以来一直是趋势。 这可以通过其向上攀升的移动平均线来确认。 现在这是数据驱动的。 让数据告诉您股票的性质,而不是根据任何直觉来决定

加入我的网站 (Join my website)

If you are interested in my approach , I have it available on my website https://www.nziter.com. Please check out it.

如果您对我的方法感兴趣,可以在我的网站https://www.nziter.com上找到 。 请检查一下。

翻译自: https://medium.com/swlh/developing-a-data-driven-approach-in-stock-market-investment-104c2b1e49c4

数据驱动开发

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389465.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端之sublime text配置

接下来我们来了解如何调整sublime text的配置,可能很多同学下载sublime text的时候就是把它当成记事本来使用,也就是没有做任何自定义的配置,做一些自定义的配置可以让sublime text更适合我们的开发习惯。 那么在利用刚才的命令面板我们怎么打…

python 时间序列预测_使用Python进行动手时间序列预测

python 时间序列预测Time series analysis is the endeavor of extracting meaningful summary and statistical information from data points that are in chronological order. They are widely used in applied science and engineering which involves temporal measureme…

keras框架:目标检测Faster-RCNN思想及代码

Faster-RCNN(RPN CNN ROI)概念 Faster RCNN可以分为4个主要内容: Conv layers:作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的convrelupooling层提取 image的feature maps。该feature maps被共享用于…

算法偏见是什么_算法可能会使任何人(包括您)有偏见

算法偏见是什么在上一篇文章中,我们展示了当数据将情绪从动作中剥离时会发生什么 (In the last article, we showed what happens when data strip emotions out of an action) In Part 1 of this series, we argued that data can turn anyone into a psychopath, …

大数据笔记-0907

2019独角兽企业重金招聘Python工程师标准>>> 复习: 1.clear清屏 2.vi vi xxx.log i-->edit esc-->command shift:-->end 输入 wq 3.cat xxx.log 查看 --------------------------- 1.pwd 查看当前光标所在的path 2.家目录 /boot swap / 根目录 起始位置 家…

Tensorflow框架:目标检测Yolo思想

Yolo-You Only Look Once YOLO算法采用一个单独的CNN模型实现end-to-end的目标检测: Resize成448448,图片分割得到77网格(cell)CNN提取特征和预测:卷积部分负责提取特征。全链接部分负责预测:过滤bbox(通过nms&#…

线性回归非线性回归_了解线性回归

线性回归非线性回归Let’s say you’re looking to buy a new PC from an online store (and you’re most interested in how much RAM it has) and you see on their first page some PCs with 4GB at $100, then some with 16 GB at $1000. Your budget is $500. So, you es…

朴素贝叶斯和贝叶斯估计_贝叶斯估计收入增长的方法

朴素贝叶斯和贝叶斯估计Note from Towards Data Science’s editors: While we allow independent authors to publish articles in accordance with our rules and guidelines, we do not endorse each author’s contribution. You should not rely on an author’s works wi…

numpy统计分布显示

import numpy as np from sklearn.datasets import load_iris dataload_iris()petal_lengthnumpy.array(list(len[2]for len in data[data]))#取出花瓣长度数据 print(np.max(petal_length))#花瓣长度最大值 print(np.mean(petal_length))#花瓣长度平均值 print(np.std(petal_l…

Keras框架:人脸检测-mtcnn思想及代码

人脸检测-mtcnn 概念: MTCNN,英文全称是Multi-task convolutional neural network,中文全称是多任务卷积神经网络, 该神经网络将人脸区域检测与人脸关键点检测放在了一起。 从工程实践上,MTCNN是一种检测速度和准确率…

python中格式化字符串_Python中所有字符串格式化的指南

python中格式化字符串Strings are one of the most essential and used datatypes in programming. It allows the computer to interact and communicate with the world, such as printing instructions or reading input from the user. The ability to manipulate and form…

Javassist实现JDK动态代理

提到JDK动态代理,相信很多人并不陌生。然而,对于动态代理的实现原理,以及如何编码实现动态代理功能,可能知道的人就比较少了。接下一来,我们就一起来看看JDK动态代理的基本原理,以及如何通过Javassist进行模…

数据图表可视化_数据可视化如何选择正确的图表第1部分

数据图表可视化According to the World Economic Forum, the world produces 2.5 quintillion bytes of data every day. With so much data, it’s become increasingly difficult to manage and make sense of it all. It would be impossible for any person to wade throug…

Keras框架:实例分割Mask R-CNN算法实现及实现

实例分割 实例分割(instance segmentation)的难点在于: 需要同时检测出目标的位置并且对目标进行分割,所以这就需要融合目标检测(框出目标的位置)以及语义分割(对像素进行分类,分割…

机器学习 缺陷检测_球检测-体育中的机器学习。

机器学习 缺陷检测🚩 目标 (🚩Objective) We want to evaluate the quickest way to detect the ball in a sport event in order to develop an Sports AI without spending a million dollars on tech or developers. Quickly we find out that detec…

使用python和javascript进行数据可视化

Any data science or data analytics project can be generally described with the following steps:通常可以通过以下步骤来描述任何数据科学或数据分析项目: Acquiring a business understanding & defining the goal of a project 获得业务理解并定义项目目…

为什么饼图有问题

介绍 (Introduction) It seems as if people are split on pie charts: either you passionately hate them, or you are indifferent. In this article, I am going to explain why pie charts are problematic and, if you fall into the latter category, what you can do w…

先知模型 facebook_使用Facebook先知进行犯罪率预测

先知模型 facebookTime series prediction is one of the must-know techniques for any data scientist. Questions like predicting the weather, product sales, customer visit in the shopping center, or amount of inventory to maintain, etc - all about time series …

github gists 101使代码共享漂亮

If you’ve been going through Medium, looking at technical articles, you’ve undoubtedly seen little windows that look like the below:如果您一直在阅读Medium,并查看技术文章,那么您无疑会看到类似于以下内容的小窗口: def hello_…

基于Netty的百万级推送服务设计要点

1. 背景1.1. 话题来源最近很多从事移动互联网和物联网开发的同学给我发邮件或者微博私信我,咨询推送服务相关的问题。问题五花八门,在帮助大家答疑解惑的过程中,我也对问题进行了总结,大概可以归纳为如下几类:1&#x…