怎样更好地理解并记忆泰勒展开式

本段的核心思想是仿造。当我们想要仿造一个东西的时候,无形之中都会按照上文提到的思路,即先保证大体上相似,再保证局部相似,再保证细节相似,再保证更细微的地方相似……不断地细化下去,无穷次细化以后,仿造的东西将无限接近真品。真假难辨。这是每个人都明白的生活经验。

一位物理学家,把这则生活经验应用到他自己的研究中,则会出现下列场景:一辆随意行驶的小车,走出了一个很诡异的轨迹曲线:
在这里插入图片描述
物理学家觉得这段轨迹很有意思,也想开车走一段一摸一样的轨迹。既然是复制,他把刚才关于“仿造”生活经验应用到这里,提出了一个解决办法:既然想模仿刚才那辆车,那首先应该保证初始位置一样,继续模仿,让车在初始位置的速度也一样,不满足,继续细化,这次保持位置、在初始位置处的速度一样的同时,保证在初始位置处车的加速度也一样,不满足,继续细化,这次保证初始位置、初始位置处的速度、初始位置处的加速度都一样,也保证初始位置处的加速度的变化率也一样,不满足,精益求精,可以一直模仿下去。物理学家得出结论:把生活中关于“仿造”的经验运用到运动学问题中,如果想仿造一段曲线,那么首先应该保证曲线的起始点一样,其次保证起始点处位移随时间的变化率一样(速度相同),再次应该保证前两者相等的同时关于时间的二阶变化率一样(加速度相同)……如果随时间每一阶变化率(每一阶导数)都一样,那这俩曲线肯定是完全等价的。

1. 泰勒

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面就是严谨的计算了。

在这里插入图片描述
在这里插入图片描述
先算个一阶的。
在这里插入图片描述
再来个二阶的。
在这里插入图片描述
在这里插入图片描述
到这里,不光是泰勒,我们普通人也能大概想象得到,如果继续继续提高阶数,相似范围继续扩大,无穷高阶后,整个曲线都无限相似。插个图,利用计算机可以快速实现。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
泰勒的故事讲完了,但是事情没完,因为泰勒没有告诉你,到底该求导几次

于是,剩下一帮人帮他擦屁股。第一个帮他擦屁股的叫佩亚诺。他把上面式子中的省略号中的东西给整出来了。然而最终搁浅了,不太好用。后面拉格朗日又跳出来帮佩亚诺擦屁股。至此故事大结局。

首先讲讲佩亚诺的故事。

2. 佩亚诺

在这里插入图片描述
佩亚诺开始思考误差的事。先不说佩亚诺,假如让你思考这个问题,你会有一个怎样的思路?既然是误差,肯定越小越小对吧。所以当我们思考误差的时候,很自然的逻辑就是让这个误差趋近于0。佩亚诺也是这么想的,他的大方向就是令后面这半部分近似等于0,

一旦后半部分很接近0了,那么就可以省去了,只展开到n阶就可以了,泰勒展开就可以用了。但是他不知道如何做到。

后来,他又开始琢磨泰勒的整个思路:先保证初始点位置相同,再保证一阶导数相同,有点相似了,再保证二阶导数相同,更细化了,再保证三阶导数相同……突然灵光闪现:**泰勒展开是逐步细化的过程,也就是说,每一项都比前面一项更加精细化(更小)。**举个例子,你想把90斤粮食添到100斤,第一次,添了一大把,变成99斤了,第二次,添了一小把,变成99.9斤了,第三次,添了一小撮,变成99.99斤了……每一次抓的粮食,都比前一次抓的少。泰勒展开式里面也是这样的:
在这里插入图片描述
由此可见,最后一项(n阶)是最小的。皮亚诺心想:只要让总误差(后面的所有项的总和)比这一项还要小,不就可以把误差忽略了吗?

现在的任务就是比较大小,比较泰勒展开式中的最后一项、与误差项的大小,即:
在这里插入图片描述

如何比较大小?高中生都知道,比较大小无非就是作差或者坐商。不能确定的话,一个个试一下。最终,皮亚诺用的坐商。他用误差项除以泰勒展开中的最小的项,整理后得到:
在这里插入图片描述
我不知道你们看到这里是什么感觉,可能你觉得佩亚诺好棒,也可能觉得,这不糊弄人嘛。

反正,为了纪念佩亚诺的贡献,大家把上面的误差项成为佩亚诺余项。

总结一下佩亚诺的思路:首先,他把泰勒展开式中没有写出来的那些项补全,然后,他把这些项之和称为误差项,之后,他想把误差项变为0,考虑到泰勒展开式中的项越来越小,他就让误差项除以最后一项,试图得到0的结果,最后发现,只有当xxx趋近于x0x_0x0时,这个商才趋近于0,索性就这样了。

佩亚诺的故事讲完了,他本想完善泰勒展开,然而,他的成果只能算xxx趋近于x0x_0x0时的情况。这时候,拉格朗日出场了。

3. 拉格朗日

在这里插入图片描述
在这里插入图片描述
把上面的这个简单的问题用数学语言描述出来,就是拉格朗日中值定理:
在这里插入图片描述
后来啊,拉格朗日的中值定理被柯西看到了,柯西牛逼啊,天生对于算式敏感。柯西认为,纵坐标是横坐标的函数,那我也可以把横坐标写成一个函数啊,于是他提出了柯西中值定理:
在这里插入图片描述
拉格朗日听说了这事,心里愤愤不平,又觉得很可惜,明明是自己的思路,就差这么一步,就让柯西捡便宜了,不过柯西确实说的有道理。

这件事给拉格朗日留下了很深的心理阴影。接下来,拉格朗日开始思考泰勒级数的误差问题,他同佩亚诺一样,只考虑误差部分(见前文)。

插一句,各位老铁,接下来拉格朗日的操作绝壁开挂了,我实在是编不出来他的脑回路。

首先,跟佩亚诺一样,先把误差项写出来,并设误差项为R(x)R(x)R(x)
在这里插入图片描述
在这里插入图片描述
拉格朗日继续复制这种思路,想看看能不能继续往下写:

先看分子
在这里插入图片描述
再看分母
在这里插入图片描述
在这里插入图片描述
本文涵盖泰勒展开式、佩亚诺余项、拉格朗日中值定理、柯西中值定理、拉格朗日余项。全文完毕。

作者:「已注销」
链接:https://www.zhihu.com/question/25627482/answer/313088784
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

4. 麦克劳林级数

通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。
在这里插入图片描述

4.1 几个重要的麦克劳林级数

4.1.1 几何级数
4.1.2 二项式级数

在这里插入图片描述

4.1.3 指数函数和自然对数

在这里插入图片描述

4.1.4 三角函数

在这里插入图片描述

4.1.5 双曲函数

在这里插入图片描述

4.1.6 朗伯W函数

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/345581.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新的DMN编辑器预览

Workbench 7.13.0.Final于10月16日星期二发布,此版本带来了许多有趣的功能和重要的修复程序。 亮点之一是作为技术预览功能的新DMN编辑器,该功能仍在开发中,但您可以开始使用。 在本文中,您将学习如何启用DMN编辑器预览&#xff…

指数矩阵(exponential matrix)

类似于指数ex……e^x……ex……的本质是一种近似,eAt……e^{At}……eAt……是同样原理。 http://www.mashangxue123.com/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0/1756604500.html

Boole‘s,Doob‘s inequality,中心极限定理Central Limit Theorem,Kolmogorov extension theorem, Lebesgue‘s domin

1. Boole’s inequality In probability theory, Boole’s inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities …

秩为 1 的矩阵的一些性质

前言 从上面的分析和例题看到,对于秩为1的n阶矩阵,零是其n重或n-1重特征值,如果是n-1重,则非零特征值是矩阵的主对角线元素之和;另外还看到,秩为1的矩阵可以分解为一个非零列向量与另一个非零列向量的转置的乘积&#…

probability space 概率空间,Filtration,σ-algebras

1. probability space 概率空间 1.1 概率基础 1.2 概率空间 2. Filtration filtration在钱敏平老师和龚光鲁老师的《随机过程论》中直接称其为非降的KaTeX parse error: Undefined control sequence: \sigmma at position 1: \̲s̲i̲g̲m̲m̲a̲代数族。如图。 一般叫σ\…

概率论中PDF、PMF和CDF的区别与联系

在概率论中,经常出现PDF、PMF和CDF,那么这三者有什么区别与联系呢? 1. 概念解释 PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至…

随机游走 Random Walk

随机游走(英语:Random Walk,缩写为 RW),是一种数学统计模型,它是一连串的轨迹所组成,其中每一次都是随机的。[1][2]它能用来表示不规则的变动形式,如同一个人酒后乱步,所…

wald

1. Wald’s equation Let (Xn)n∈N(X_n)_{n∈ℕ}(Xn​)n∈N​ be a sequence of real-valued, independent and identically distributed (i.i.d.) random variables and let NNN be a nonnegative integer-value random variable that is independent of the sequence (Xn)n∈…

Java 11就在这里,您准备好进行切换了吗?

在应该将Java 9发行版“震撼我们的世界”一年之后,我们实际上一直在等待的LTS版本终于来了 我们知道,大多数开发人员,团队,公司等尚未通过Java 8进行更新。 即使去年发布了模块Java 9,然后在3月又发布了Java 10。 令…

随机变量和的分布—卷积公式distribution convolution的应用

在概率论里面,大家都会碰到一类问题,就是涉及到这样一类题目: 一般来说,这种类型的题目有两种方法来解决,第一种就是二重积分法;第二种就是应用卷积公式。下面我给大家列出了卷积公式: 但是…

Fluent Design单选按钮,复选框,选择框,Java菜单

这次我对JMetro进行了重大更新。 3.8版引入了以下新的Fluent Design (FDS)启发风格(深色和浅色)和更新: 新的单选按钮样式; 复选框的新样式; 菜单的新样式; 更新了上下文菜单的样…

stability condition in queueing system

https://www.unf.edu/~cwinton/html/cop4300/s09/class.notes/e1-Stability.pdf

undertow服务器分析_进入Undertow Web服务器

undertow服务器分析随着Java EE 7的到来以及处理诸如Web Sockets API和HTTP升级(例如EJB over HTTP)之类的高级功能的要求,WildFly开发团队已经做出了重要决定。 在长期致力于JBoss Web服务器(Apache Tomcat的一个分支&#xff09…

matlab中的rng函数

一、matlab中的随机函数有:rand、randn 1、rand() 功能:生成0-1之间的伪随机数 e.g. rand(3) 生成一个3*3的0-1之间的伪随机数矩阵 2、randn() 功能:生成标准正态分布的伪随机数(均值为0&am…

inf sup上下确界与 min, max 的区别

inf 是 infimum 的简称,sup 是 supremum 的简称。 使用 inf 或 sup 总能保证一个函数的 inf 或 sup 存在,而函数的 min 或 max 有时候不存在。 inf 的定义:一个集合最大的下界 下确界:infimum,简写为 inf&#xff08…

在边缘,作为网关或在网格中构建控制平面以管理Envoy代理的指南

最近, Envoy已成为流行的网络组件。 马特克莱因( Matt Klein )在几年前写了一个博客,内容涉及Envoy的动态配置API,以及它如何成为Envoy的采用曲线向右移的原因之一。 他称该博客为“通用数据平面API”。 由于有许多其他…

java编译器分析_Java反编译器的剖析

java编译器分析简单地说,反编译器尝试将源代码转换为目标代码。 但是有很多有趣的复杂性-Java源代码是结构化的; 字节码当然不是。 而且,转换不是一对一的:两个不同的Java程序可能会产生相同的字节码。 我们需要应用试探法以合理地…

各种各样的数

数的类别 数可以被分类为数系的集合内。对于以符号表示数的不同方式,则请看记数系统。 自然数 主条目:自然数 最常用的数为自然数,有些人指正整数,有些人则指非负整数。前者多在数论中被使用,而在集合论和计算机科学…

JDK 11上的JavaFX

在第11版发布之后,人们对JavaFX与JDK的解耦感到百感交集。 我们中的许多人认为现在是时候告别JavaFX并改用另一种GUI技术了,而另一些人对此情况感到高兴。 他们认为,将JavaFX与Oracle分离开来,并致力于将其开发为开源社区驱动的项…