P3803 【模板】多项式乘法(FFT)

P3803 【模板】多项式乘法(FFT)

题目描述

给定一个 n 次多项式 F(x),和一个 m 次多项式 G(x)。
请求出 F(x)和 G(x)的卷积。
从低到高输出F(x)*G(x)的系数
另一种问法:
如果有两个无限序列a和b,那么它们卷积的结果是:在这里插入图片描述
求出yn值

题解:

模板题
建议背过模板
讲的非常不错的博客

代码:

#include <cmath>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;const int maxn=2e6+5;
const double pi=3.1415926535898;
int t, n, m, len=1, l, r[maxn*2];struct Cpx{  //复数double x, y;Cpx (double t1=0, double t2=0){ x=t1, y=t2; }
}A[maxn*2], B[maxn*2], C[maxn*2];
Cpx operator +(Cpx a, Cpx b){ return Cpx(a.x+b.x, a.y+b.y); }
Cpx operator -(Cpx a, Cpx b){ return Cpx(a.x-b.x, a.y-b.y); }
Cpx operator *(Cpx a, Cpx b){ return Cpx(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x); }void fdft(Cpx *a, int n, int flag){  //快速将当前多项式从系数表达转换为点值表达for (int i=0; i<n; ++i) if (i<r[i]) swap(a[i], a[r[i]]);for (int mid=1; mid<n; mid<<=1){  //当前区间长度的一半Cpx w1(cos(pi/mid), flag*sin(pi/mid)), x, y;for (int j=0; j<n; j+=(mid<<1)){  //j:区间起始点Cpx w(1, 0);for (int k=0; k<mid; ++k, w=w*w1){  //系数转点值x=a[j+k], y=w*a[j+mid+k];a[j+k]=x+y; a[j+mid+k]=x-y;}}}
}inline int getint(int &x){char c; int flag=0;for (c=getchar(); !isdigit(c); c=getchar())if (c=='-') flag=1;for (x=c-48; c=getchar(), isdigit(c);)x=(x<<3)+(x<<1)+c-48;return flag?x:-x;
}int main(){getint(n); getint(m); int x;for (int i=0; i<=n; ++i) getint(x), A[i].x=x;for (int i=0; i<=m; ++i) getint(x), B[i].x=x;while (len<=n+m) len<<=1, ++l;  //idft需要至少l1+l2个点值for (int i=0; i<len; ++i)  //编号的字节长度为lr[i]=(r[i>>1]>>1)|((i&1)<<(l-1));fdft(A, len, 1); fdft(B, len, 1);for (int i=0; i<len; ++i) C[i]=A[i]*B[i];fdft(C, len, -1);  //idftfor (int i=0; i<=n+m; ++i) printf("%d ", int(C[i].x/len+0.5));return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/318421.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YBTOJ:单词频率(AC自动机)

解析 我对力量一无所知 通过这题&#xff0c;可以看出我对AC自动机还是完全没有理解 qwq 首先容易想到&#xff1a; 建一课trie树&#xff0c;然后建树时记录每个串s的终点&#xff0c;这个点后面每被经过一次&#xff0c;就相当于出现一次该单词s 但是&#xff0c;这种“出现”…

一元一次方程

一元一次方程–逆波兰栈 【题目摘要】 题目描述 SLON是一个调皮的学生&#xff0c;为了让他静下心来&#xff0c;老师给他出了一道数学题&#xff1a; 给定表达式A&#xff0c;A中含有变量x和,-,*,(,)这些符号&#xff0c;括号成对出现&#xff0c;一个算术运算符均对应两个操…

.net core上 K8S(七).netcore程序的服务发现

正文上一章我们分享了k8s的网络代理模式&#xff0c;今天我们来分享一下k8s中的服务发现。1.环境变量模式的服务发现k8s默认为我们提供了通过环境变量来实现服务发现的功能&#xff0c;前提是1.需要service在pod之前创建2.适用于同一命名空间1.1创建servicekubectl create -f n…

ASP.NET Core 实战:使用ASP.NET Core Web API 和 Vue.js 搭建前后端分离项目

一、前言这几年前端的发展速度就像坐上了火箭&#xff0c;各种的框架一个接一个的出现&#xff0c;需要学习的东西越来越多&#xff0c;分工也越来越细&#xff0c;作为一个 .NET Web 程序猿&#xff0c;多了解了解行业的发展&#xff0c;让自己扩展出新的技能树&#xff0c;对…

【CF1199 D,E, F】Welfare State // Matching vs Independent Set // Rectangle Painting 1

2019-08-15下午三道练习题CF1199 思路有点难想 but很好实现 这是原网站链接&#xff1a;传送门 这里只完成D, E, F三题 文章目录D&#xff1a;Welfare State题目大意正解瞅瞅代码E:Matching vs Independent Set题目大意正解代码实现F:Rectangle Painting 1题目大意正解代码实现…

YBTOJ:前缀匹配(AC自动机)

文章目录题目描述解析代码题目描述 解析 做的不错 把trie树真的当成一棵树递归即可 注意一个标记时的问题&#xff1a; void AC(){int lstrlen(s01),pl1;for(int i1;i<l;i){int aask(s0[i]);pltr[pl][a];int kpl;while(k>1){if(ok[k]) break;//注意&#xff01;ok[k]1;…

[HAOI2006]均分数据

[HAOI2006]均分数据 题解&#xff1a; 题目稍微解释一下&#xff1a; 把n个数以分为m组&#xff0c;计算每一组的和&#xff0c;求得到的这m个数的方差。由于分法是任意的&#xff0c;我们要求这些方差中的最小值 我们先用STL中的函数random_shuffle()用来对一个元素序列进行…

Docker最全教程——从理论到实战(八)

在本系列教程中&#xff0c;笔者希望将必要的知识点围绕理论、流程&#xff08;工作流程&#xff09;、方法、实践来进行讲解&#xff0c;而不是单纯的为讲解知识点而进行讲解。也就是说&#xff0c;笔者希望能够让大家将理论、知识、思想和指导应用到工作的实际场景和实践之中…

不定方程(质数与因数)

文章目录题目描述解析代码题目描述 数据范围有误&#xff01;应该是不超过1e6 解析 容易推出&#xff1a; y&#xff08;x∗*∗n!)/(x-n!) 换元&#xff0c;令tx-n&#xff01; 则&#xff1a; yn!(n!)2/t 因为x、y都与t一一对应 所以本题就是求 (n!)2 的因数个数 我们求出n&…

Matlab快速入门

命令行窗口 clc 清屏 clear 清理变量 常用矩阵&#xff1a; x[0:2] 这是转置符号xlinspace(0,2,5) 从0到2分配5个空间xzeros(2,3)两行三列全为0的矩阵、 ones(2)2行2列全为1的方阵 eye(2)单位阵 rand(1,2)产生一行二列的随机数&#xff08;从0到1之间均匀随机数&#xff09;固…

【CF 1191】Tokitsukaze, CSL and Stone Game//Tokitsukaze and Duel//Tokitsukaze and Strange Rectangle

很难想 but很好实现 博弈论专练 传送门 惯例这里只完成D&#xff0c;E&#xff0c;F 话不多说上代码 文章目录D:Tokitsukaze, CSL and Stone Game题目大意题解代码实现E&#xff1a;Tokitsukaze and Duel题目大意题解代码实现E:Tokitsukaze and Strange Rectangle题目大意题解代…

【.NET Core项目实战-统一认证平台】第十一章 授权篇-密码授权模式

上篇文章介绍了基于Ids4客户端授权的原理及如何实现自定义的客户端授权&#xff0c;并配合网关实现了统一的授权异常返回值和权限配置等相关功能&#xff0c;本篇将介绍密码授权模式&#xff0c;从使用场景、源码剖析到具体实现详细讲解密码授权模式的相关应用。.netcore项目实…

YBTOJ:灯光控制(贪心)(公倍数)(暴力枚举)

文章目录题目描述解析代码题目描述 解析 没有想出来 首先可以确定开关要么开一次&#xff0c;要么不动&#xff0c;其他都和这俩是等价的 一开始最先想到的就是贪心的方法&#xff0c;每个开关遍历&#xff0c;如果按下会使答案变好就按下。 但是显然当前的开闭对后面是有后效…

Tree Constructer

题目&#xff1a; 题意&#xff1a; 如果点x和y有连边&#xff0c;当且仅当a[x] or a[y] 260 - 1 &#xff08;两者是充分必要&#xff09; 现在给你边的关系&#xff0c;问你每个点的值应该是多少&#xff1f;&#xff08;给出一种情况即可&#xff09; 题解&#xff1a; …

[USACO19JAN,Platinum]Train Tracking 2

虽然是简单的dp &#xff0c;but真的太难想到了&#xff0c;而且我的码力。。。 Train Tracking 2 【题目描述】 每天特快列车都会经过农场。列车有N节车厢&#xff08;1≤N≤105&#xff09;&#xff0c;每节车厢上有一个1到109之间的正整数编号&#xff1b;不同的车厢可能会…

.netcore 堆栈调用方法小记

1|0背景上午临近午饭时&#xff0c;公司同事反馈验证码被攻击灌水。我们匆忙查询验证码明细&#xff0c;对已频繁出现的IP插入黑名单&#xff0c;但IP仍然隔断时间频繁变动&#xff0c;不得已之下只能先封禁对应公司id的验证码发送功能。年初时候&#xff0c;专门对SSO站点的发…

洛谷P2480:古代猪文(中国剩余定理)(欧拉定理)

传送门 文章目录题目描述解析总结代码题目描述 解析 简单来说&#xff0c;就是求&#xff1a; g∑C(d,n)(d是n的约数&#xff09;mod 999911659 可以先特判一下&#xff0c;999911659|g时&#xff0c;答案为0 否则&#xff0c;可以通过欧拉定理转化为&#xff1a; g∑C(d,n)(d…

杯子 + Kronican

杯子 Kronican 【题目描述】 重庆八中在80周年校庆的时候获捐n个杯子&#xff0c; 每个杯子有两个属性&#xff1a;一个是已装水量 ai&#xff0c;一个是可装水量 bi&#xff08;ai < bi&#xff09;。 从一个杯子向另一个杯子倒 x 单位体积的水需要花费的时间是 x 秒。 现…

微软开源的Trill是什么?

以下是一篇15年的文章的译文&#xff1a;https://dwainegilmer.wordpress.com/2015/01/28/microsoft-trill-for-streaming-analytics-from-microsoft-research/当今许多大数据应用程序套件的重点是数据存储。它们是围绕狭窄范围的数据集设想和设计的&#xff0c;通常是为了组织…

剪纸游戏(博弈论)(SG函数)

文章目录题目描述解析题目描述 解析 本题的关键就是SG函数的定义 尝试了一些自己直观上可能对但题解没有使用的约定方法&#xff08;当然最后证明都是错的 。。。&#xff09;&#xff0c;对SG的理解更深刻了一些 SG0的含义是无法再移动换句话说也就是再移动也对败局于事无补&…