Intervals on the Ring
题意:
给出环上的一组区间,需要构造环上的一组区间使得这些区间的交是给定的区间的并
题解:
集合的摩尔定理告诉我们:∪Ai‾=∩Ai‾\overline{\cup A_{i}}=\cap\overline{A_{i}}∪Ai=∩Ai(区间的并的补等于区间的补的交),所以直接输出每一段未被给出区间覆盖的区间的补即可
例如:n=6,A1=[1,1],A2=[3,3],A3=[5,5],则输出[3,1],[5,3],[1,5]
代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+10;
int sum[maxn*2];
int a[maxn*2];
int t,n,m;
struct xy
{int l,r;
}e[maxn];
bool cmp(xy x,xy y)
{return x.l<y.l;
}
int main()
{cin>>t;while(t--){cin>>n>>m;memset(sum,0,sizeof(sum));memset(e,0,sizeof(e));memset(a,0,sizeof(a));for(int i=1;i<=m;i++){int a,b;cin>>a>>b;if(b<a){sum[a]++,sum[b+n+1]--;//sum[1]++,sum[b+1]--;}else {sum[a]++,sum[b+1]--;}}for(int i=1;i<=n;i++){a[i]=a[i-1]+sum[i];}for(int i=n+1;i<=2*n;i++){a[i]=a[i-1]+sum[i];if(a[i]){a[i-n]++;}}//cout<<1<<" "<<n<<endl;int tot=0;int flag=0;int x[maxn];int cnt=0;int l,r;a[n+1]=0;for(int i=1;i<=n+1;i++){//cout<<a[i]<<endl;if(flag==0){if(a[i]){flag=1;e[++tot].l=i;//x[++cnt]=i;}}else if(flag==1){if(a[i]==0){flag=0;e[tot].r=i-1;x[++cnt]=i-1;}}//cout<<i<<" "<<tot<<endl;} //cout<<a[n]<<endl;//cout<<tot<<endl;//if(a[n])e[tot].r=n;sort(e+1,e+tot+1,cmp);if(a[1]&&a[n]){if(tot==1){cout<<1<<endl;cout<<1<<" "<<n<<endl;continue;}cout<<tot-1<<endl;for(int i=2;i<=tot;i++)cout<<e[i].l<<" "<<e[i-1].r<<endl; continue;}else {cout<<tot<<endl;if(tot==1){cout<<e[1].l<<" "<<e[1].r<<endl;}else {cout<<e[1].l<<" "<<e[tot].r<<endl;for(int i=2;i<=tot;i++)cout<<e[i].l<<" "<<e[i-1].r<<endl; }continue;}}return 0;
}
/*
10
7
3
7 2
6 3
5 2
*/