2018-2019 ACM-ICPC, Asia Shenyang Regional Contest E. The Kouga Ninja Scrolls 切比雪夫距离 +线段树

在这里插入图片描述
传送门
将曼哈顿距离转换成切比雪夫距离,现在就是求max(∣x1−x2∣,∣y1−y2∣)max(|x_1-x_2|,|y_1-y_2|)max(x1x2,y1y2),显然我们可以将x,yx,yx,y分开考虑,下面以xxx为例。

考虑一段区间内不同门派的最大值和最小值,我们可以维护这个区间的最大值和最小值,以及与最大值门派不同的次大值和与最小值门派不同的次小值,这样就不难得出答案了。

#include<bits/stdc++.h>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define Mid (tr[u].l+tr[u].r>>1)
#define pb push_back
using namespace std;const int N=1000010,INF=0x3f3f3f3f,mod=1e9+7;
typedef long long LL;int n,m;
int a[N],x[N],y[N],z[N];/*
最大值  与最大值门派不同的次大值
最小值  与最小值门派不同的次小值
*/
struct Point {LL val,id;
};
vector<Point>v;bool cmp1(Point a,Point b) {return a.val>b.val;
}bool cmp2(Point a,Point b) {return a.val<b.val;
}struct Seg {struct Node {int l,r;LL maxid[2],minid[2];LL maxval[2],minval[2];}tr[N<<2];void update(Node &u,Node ls,Node rs) {//最大值if(ls.maxval[0]>rs.maxval[0]) swap(ls,rs);u.maxval[0]=rs.maxval[0];u.maxid[0]=rs.maxid[0];//次大值v.clear();v.push_back({ls.maxval[0],ls.maxid[0]});v.push_back({ls.maxval[1],ls.maxid[1]});v.push_back({rs.maxval[1],rs.maxid[1]});sort(v.begin(),v.end(),cmp1);u.maxval[1]=-1e9-1;u.maxid[1]=0;for(auto x:v) if(x.id!=u.maxid[0]&&x.id!=0) {u.maxval[1]=x.val;u.maxid[1]=x.id;break;}//最小值if(ls.minval[0]<rs.minval[0]) swap(ls,rs);u.minval[0]=rs.minval[0];u.minid[0]=rs.minid[0];//次小值v.clear();v.push_back({ls.minval[0],ls.minid[0]});v.push_back({ls.minval[1],ls.minid[1]});v.push_back({rs.minval[1],rs.minid[1]});sort(v.begin(),v.end(),cmp2);u.minval[1]=1e9+1;u.minid[1]=0;for(auto x:v) if(x.id!=u.minid[0]&&x.id!=0) {u.minval[1]=x.val;u.minid[1]=x.id;break;}}void pushup(int u) {update(tr[u],tr[L],tr[R]);}void build(int u,int l,int r) {tr[u]={l,r};if(l==r) {tr[u].maxid[0]=tr[u].minid[0]=z[l];tr[u].maxid[1]=tr[u].minid[1]=0;tr[u].maxval[0]=tr[u].minval[0]=a[l];tr[u].maxval[1]=-1e9-1;tr[u].minval[1]=1e9+1;return;}build(L,l,Mid); build(R,Mid+1,r);pushup(u);}void change_val(int u,int pos,int val) {if(tr[u].l==tr[u].r) {tr[u].maxval[0]+=val;tr[u].minval[0]+=val;return;}if(pos<=Mid) change_val(L,pos,val);else change_val(R,pos,val);pushup(u);}void change_id(int u,int pos,int val) {if(tr[u].l==tr[u].r) {tr[u].maxid[0]=val;tr[u].minid[0]=val;return;}if(pos<=Mid) change_id(L,pos,val);else change_id(R,pos,val);pushup(u);}Node query(int u,int l,int r) {if(tr[u].l>=l&&tr[u].r<=r) return tr[u];if(r<=Mid) return query(L,l,r);else if(l>Mid) return query(R,l,r);else {Node ans,ls,rs;ls=query(L,l,r); rs=query(R,l,r);update(ans,ls,rs);return ans;}}LL get_ans(int l,int r) {Node u=query(1,l,r);LL ans=0;for(int i=0;i<2;i++) {for(int j=0;j<2;j++) {if(u.maxid[i]!=u.minid[j]&&u.maxid[i]!=0&&u.minid[j]!=0) {ans=max(ans,abs(u.maxval[i]-u.minval[j]));}}}return ans;}
}seg[2];void solve() {scanf("%d%d",&n,&m);for(int i=1;i<=n;i++) scanf("%d%d%d",&x[i],&y[i],&z[i]);for(int i=1;i<=n;i++) a[i]=x[i]+y[i];seg[0].build(1,1,n);for(int i=1;i<=n;i++) a[i]=x[i]-y[i];seg[1].build(1,1,n);while(m--) {int op; scanf("%d",&op);if(op==1) {int k,x,y;scanf("%d%d%d",&k,&x,&y);seg[0].change_val(1,k,x+y);seg[1].change_val(1,k,x-y);} else if(op==2) {int k,c;scanf("%d%d",&k,&c);seg[0].change_id(1,k,c);seg[1].change_id(1,k,c);} else {int l,r; scanf("%d%d",&l,&r);printf("%lld\n",max(seg[0].get_ans(l,r),seg[1].get_ans(l,r)));}}
}int main() {int _; scanf("%d",&_);for(int i=1;i<=_;i++) {printf("Case #%d:\n",i);solve();}return 0;
}
/*
1
2 1
1 1 1
1 1 2
3 1 26 2
hahaha
*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314417.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET Core 框架本质学习

本文作为学习过程中的一个记录。学习文章地址&#xff1a;https://www.cnblogs.com/artech/p/inside-asp-net-core-framework.html一. ASP.NET Core 框架上的 Hello World程序public class Program{public static void Main()> new WebHostBuilder() .UseKestrel() …

牛客小白月赛12:月月给华华出题(欧拉函数)

月月给华华出题 思路 ∑i1nigcd(i,n)\sum_{i 1} ^{n} \frac{i}{gcd(i, n)}i1∑n​gcd(i,n)i​ ∑d∣n∑i1nid(gcd(i,d)d) \sum _{d \mid n} \sum_{i 1} ^{n} \frac{i}{d} (gcd(i, d) d)d∣n∑​i1∑n​di​(gcd(i,d)d) ∑d∣n∑i1ndi(gcd(i,d)1) \sum_{d\mid n} \sum_{i 1…

AtCoder Regular Contest 064

文章目录C - Boxes and CandiesD - An Ordinary GameE - Cosmic RaysF - Rotated PalindromesC - Boxes and Candies Score : 300300300 points 贪心 每次比较相邻两个&#xff0c;贪心的给最后一个加即可。 代码 D - An Ordinary Game Score : 500500500 points 博弈 结…

基于C#实现的轻量级多线程队列

工作中我们经常会遇到一些一些功能需要实现造作日志&#xff0c;数据修改日志&#xff0c;对于这种业务需求如果我们以同步的方式实现&#xff0c;难免会影响到系统的性能。如下我列出集中解决方案。使用Thread异步处理。使用线程池或Task异步处理。以上两种方案确实能解决我们…

购物(DP)

购物 思路 最优值问题&#xff0c;我们考虑dpdpdp&#xff0c;dp[i][j]dp[i][j]dp[i][j]表示前iii天已经购买了jjj个糖果的花费最小值&#xff0c;显然dp[i][j]dp[i][j]dp[i][j]可以从dp[i−1][k]dp[i - 1][k]dp[i−1][k]转移过来&#xff0c;具体转移过程看代码注释部分吧。…

The 2021 ICPC Asia Taipei Regional F. What a Colorful Wall 扫描线 + 并查集

文章目录题意:思路传送门 题意: 给你平面nnn个矩形&#xff0c;每个矩形有一种颜色&#xff0c;依次给出矩形以及其的颜色&#xff0c;后面的矩形会覆盖前面的矩形&#xff0c;问最终有多少种颜色。 1≤n≤4000,0≤x1<x2<228,0≤y1<y2<228,1≤c≤n1\le n\le 4000…

【活动】厦门.NET俱乐部 省上云开发者专场

十年磨一剑&#xff0c;厦门.NET俱乐部诚挚邀请您相约软件园二期创驿站&#xff0c;参加云重启|厦门.NET俱乐部省上云开发者专场。活动干货满满&#xff0c;更有精美礼品&#xff0c;厦门.NET俱乐部期待与您“厦门论剑”。详情请点击图片或直接阅读原文报名

mobius初步

求 ∑i1n∑j1m(gcd(i,j)1)\sum_{i 1} ^{n} \sum_{j 1} ^{m} (gcd(i, j) 1)∑i1n​∑j1m​(gcd(i,j)1) 我们引入一个知识∑d∣nμ(d)(n1)\sum_{d \mid n} \mu(d) (n 1)∑d∣n​μ(d)(n1) 所以gcd(i,j)∑d∣gcd(i,j)μ(d)gcd(i, j) \sum_{d \mid gcd(i, j)} \mu(d)gcd(i,j)…

腾讯物联TencentOS tiny上云初探

2017年中旬曾写过一篇关于物联网平台的文章《微软最完善&#xff0c;百度最“小气” 看微软阿里百度三大物联网云平台对比》。现在已经过去两年了&#xff0c;物联网的格局又发生了不少的变化。不过针对腾讯来说&#xff0c;其物联网平台发轫的时间绝不算晚&#xff0c;基本就是…

P2257 YY的GCD (莫比乌斯反演)

P2257 YY的GCD 思路 求∑inn∑j1mgcd(i,j)k(k∈prime)\sum_{i n} ^{n} \sum_{j 1} ^{m} gcd(i, j) k (k \in prime)∑inn​∑j1m​gcd(i,j)k(k∈prime) 对上面式子进行化简&#xff1a; ∑k1n∑i1nk∑j1mkgcd(i,j)1,k∈prime \sum_{k 1} ^{n} \sum_{i 1} ^{\frac{n}{k}…

ASP.NET Core on K8S深入学习(3-2)DaemonSet与Job

本篇已加入《.NET Core on K8S学习实践系列文章索引》&#xff0c;可以点击查看更多容器化技术相关系列文章。上一篇《3-1 Deployment》中介绍了Deployment&#xff0c;它可以满足我们大部分时候的应用部署&#xff08;无状态服务类容器&#xff09;&#xff0c;但是针对一些特…

CF535C Tavas and Karafs 二分 + 结论

传送门 题意&#xff1a; 定义第iii个数是a(i−1)∗ba(i-1)*ba(i−1)∗b&#xff0c;先有qqq个询问&#xff0c;每次询问给你l,t,ml,t,ml,t,m代表你可以操作ttt次&#xff0c;每次可以将最多mmm个数减111&#xff0c;每次都需要回答从lll开始&#xff0c; 最远到第几个数&…

Asp.Net Core WebAPI+PostgreSQL部署在Docker中

PostgreSQL是一个功能强大的开源数据库系统。它支持了大多数的SQL:2008标准的数据类型&#xff0c;包括整型、数值值、布尔型、字节型、字符型、日期型、时间间隔型和时间型&#xff0c;它也支持存储二进制的大对像&#xff0c;包括图片、声音和视频。PostgreSQL对很多高级开发…

P2260 [清华集训2012]模积和,P2834 能力测验(二维除法分块)

P2260 [清华集训2012]模积和 推导过程 我们假定n<mn < mn<m ∑i1n∑j1m(nmodi)(mmodj),i̸j\sum_{i 1} ^{n} \sum_{j 1} ^{m} (n\mod i)(m \mod j), i \not ji1∑n​j1∑m​(nmodi)(mmodj),i​j ∑i1n∑j1m(nmodi)(mmodj)−∑k1n(nmodk)(mmodk) \sum_{i 1} ^{n…

F - Snuke‘s Coloring 2 矩形周长 + 栈

传送门 题意&#xff1a; 目前有一个左下角(0,0)(0,0)(0,0)右上角(W,H)(W,H)(W,H)的矩形&#xff0c;起初矩形内部都是白色的。 现在给你nnn个点&#xff0c;每次在以下操作中选择一种&#xff1a; 将矩形x<xix<x_ix<xi​的区域染黑将矩形x>xix>x_ix>xi​…

博客园升级有感一点建议

实践出真知这几天在园子里面最热闹的事情各位都知道吧&#xff1f;没错&#xff0c;我说的就是博客园升级事件&#xff0c;有不熟悉的朋友吗&#xff0c;没关系&#xff0c;我给你搬运好了&#xff0c;请回顾一下Powered by .NET Core 系列博文&#xff1a;【故障公告】发布 .N…

P1447 [NOI2010]能量采集(mobius反演)

P1447 [NOI2010]能量采集 式子化简 显然题目就是要我们求∑i1n∑j1m2gcd(i,j)−1\sum_{i 1} ^{n} \sum_{j 1} ^{m} 2gcd(i, j) - 1∑i1n​∑j1m​2gcd(i,j)−1 2∑i1n∑j1mgcd(i,j)−nm 2\sum_{i 1} ^{n} \sum_{j 1} ^{m} gcd(i, j) - nm2i1∑n​j1∑m​gcd(i,j)−nm 转…

AtCoder Regular Contest 063 E - Integers on a Tree 构造 + 二分图染色

传送门 题意&#xff1a; 给你一颗nnn个点的树&#xff0c;初始的时候某些点有权值pip_ipi​&#xff0c;现在你需要给没给定的点赋一个权值&#xff0c;使得任意相邻点权值之差的绝对值等于111&#xff0c;若无解输出NoNoNo。 1≤n≤1e5,1≤k≤n,0≤pj≤1e51\le n\le 1e5,1\…

.Net Core2.1 秒杀项目一步步实现CI/CD(Centos7)系列二:k8s高可用集群搭建总结以及部署API到k8s...

前言&#xff1a;本系列博客又更新了&#xff0c;是博主研究很长时间&#xff0c;亲自动手实践过后的心得&#xff0c;k8s集群是购买了5台阿里云服务器部署的&#xff0c;这个集群差不多搞了一周时间&#xff0c;关于k8s的知识点&#xff0c;我也是刚入门&#xff0c;这方面的知…

追债之旅(Dijkstra最短路)

追债之旅 思路 最短路问题&#xff0c;考虑DijkstraDijkstraDijkstra&#xff0c;用一个二维dis[i][j]dis[i][j]dis[i][j]数组&#xff0c;表示第iii天到达jjj号点的最小花费&#xff0c;disdisdis数组的更新方式改为if(dis[day][to]>dis[day−1][now]value[to]cost[day])…