AtCoder Regular Contest 063 E - Integers on a Tree 构造 + 二分图染色

传送门

题意:

给你一颗nnn个点的树,初始的时候某些点有权值pip_ipi,现在你需要给没给定的点赋一个权值,使得任意相邻点权值之差的绝对值等于111,若无解输出NoNoNo

1≤n≤1e5,1≤k≤n,0≤pj≤1e51\le n\le 1e5,1\le k\le n,0\le p_j\le 1e51n1e5,1kn,0pj1e5

思路:

考虑以定一个根,先递归儿子,求出儿子能取到的权值范围,让后根据儿子的范围来确定当前点的范围,不合法的话就直接输出NoNoNo即可。

如果合法的话,显然从我们之前选定的根开始随意的取一个区间内的合法值一定可以构造出答案。

#include<bits/stdc++.h>
#define X first
#define Y second
#define Mid (tr[u].l+tr[u].r>>1)
#define pb push_back
using namespace std;const int N=1000010,INF=0x3f3f3f3f,mod=1e9+7;
typedef long long LL;int n,m;
vector<int>v[N];
int a[N],col[N];
int l[N],r[N];void dfs_col(int u,int fa,int c) {col[u]=c;for(auto x:v[u]) {if(x==fa) continue;dfs_col(x,u,!c);}
}void dfs(int u,int fa) {for(auto x:v[u]) {if(x==fa) continue;dfs(x,u);l[u]=max(l[u],l[x]-1);r[u]=min(r[u],r[x]+1);}if(l[u]>r[u]) {puts("No");exit(0);}
}void dfs_ans(int u,int fa,int val) {a[u]=val;for(auto x:v[u]) {if(x==fa) continue;if(val-1>=l[x]&&val-1<=r[x]) dfs_ans(x,u,val-1);else dfs_ans(x,u,val+1);}
}void solve() {scanf("%d",&n);for(int i=1;i<=n-1;i++) {int a,b; scanf("%d%d",&a,&b);v[a].push_back(b);v[b].push_back(a);}for(int i=1;i<=n;i++) l[i]=-INF,r[i]=INF;memset(a,-1,sizeof(a));scanf("%d",&m);for(int i=1;i<=m;i++) {int aa,b; scanf("%d%d",&aa,&b);a[aa]=b;l[aa]=b; r[aa]=b;}for(int i=1;i<=n;i++) if(a[i]>=0) {dfs_col(i,0,a[i]%2);break;}for(int i=1;i<=n;i++) if(a[i]>=0&&(a[i]%2!=col[i])) {puts("No");return;}dfs(1,0);dfs_ans(1,0,l[1]);puts("Yes");for(int i=1;i<=n;i++) printf("%d\n",a[i]);puts("");
}int main() {int _=1;while(_--) {solve();}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314399.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.Net Core2.1 秒杀项目一步步实现CI/CD(Centos7)系列二:k8s高可用集群搭建总结以及部署API到k8s...

前言&#xff1a;本系列博客又更新了&#xff0c;是博主研究很长时间&#xff0c;亲自动手实践过后的心得&#xff0c;k8s集群是购买了5台阿里云服务器部署的&#xff0c;这个集群差不多搞了一周时间&#xff0c;关于k8s的知识点&#xff0c;我也是刚入门&#xff0c;这方面的知…

追债之旅(Dijkstra最短路)

追债之旅 思路 最短路问题&#xff0c;考虑DijkstraDijkstraDijkstra&#xff0c;用一个二维dis[i][j]dis[i][j]dis[i][j]数组&#xff0c;表示第iii天到达jjj号点的最小花费&#xff0c;disdisdis数组的更新方式改为if(dis[day][to]>dis[day−1][now]value[to]cost[day])…

Educational DP Contest U - Grouping 状压dp

传送门 题意&#xff1a; 给你nnn个物品&#xff0c;让你将其分成任意组&#xff0c;在同一个组内的i,ji,ji,j会获得ai,ja_{i,j}ai,j​的收益&#xff0c;让你选择一种分组方案使得收益最大。 1≤n≤16,∣ai,j∣≤1e91\le n\le 16,|a_{i,j}|\le 1e91≤n≤16,∣ai,j​∣≤1e9 …

使用Asp.net Core3Blazor 的全栈式网站开发体验

最新的微软视频&#xff1a; Full stack web development with ASP.NET Core 3.0 and Blazor - BRK3017 以下是重要步骤截图配注解&#xff0c;注意图多杀猫&#xff1a;此图是.Net Core3的全栈解决方案示意图。话说此图的第一部分Client 是可以灵活替换的&#xff0c;哪怕它是…

P3327 [SDOI2015]约数个数和 (mobius反演)

P3327 [SDOI2015]约数个数和 推导过程 求∑i1n∑j1md(ij)\sum_{i 1} ^{n} \sum_{j 1} ^{m} d(ij)∑i1n​∑j1m​d(ij) ∑i1n∑j1m∑x∣i∑y∣jgcd(x,y)1 \sum_{i 1} ^{n} \sum_{j 1} ^{m} \sum_{x \mid i} \sum_{y \mid j} gcd(x, y) 1i1∑n​j1∑m​x∣i∑​y∣j∑​gc…

算法学习

文章目录摘要基础算法二分倍增前缀和构造图论bfsdfs\dfs序同余最短路差分约束LCA基环树dp线性dp概率期望背包dp树形dp数位dp状压dp区间dp计数dp数据结构优化dp数据结构树上启发式合并主席树Splay线段树分治Kruskal重构树数论基础数论摘要 发现前面学的东西都忘得差不多了&…

k8s集群部分常见问题处理

目录部分常见问题处理Coredns CrashLoopBackOff 导致无法成功添加工作节点的问题添加工作节点时提示token过期kubectl 执行命令报“The connection to the server localhost:8080 was refused”网络组件flannel无法完成初始化部分节点无法启动pod最后部分常见问题处理结合我们上…

Hyper-V + CentOS7 网络设置(视频教程)

Hyper-V Centos7 网络设置 本文目标&#xff1a;1、 设置虚拟机固定IP&#xff1a;无论物理机的网络环境怎么变化&#xff0c;都需要保持虚拟机的IP地址不变&#xff0c;保证本机使用xshell等终端访问始终用同一个IP地址2、物理机可访问虚拟机&#xff0c;虚拟机是否可访问网络…

P1829 [国家集训队]Crash的数字表格(推了好久的mobius反演)

P1829 [国家集训队]Crash的数字表格 / JZPTAB 推导过程 ∑i1n∑j1mlcm(i,j)\sum_{i 1} ^{n} \sum_{j 1} ^{m} lcm(i, j)i1∑n​j1∑m​lcm(i,j) ∑i1n∑j1mijgcd(i,j) \sum_{i 1} ^{n} \sum_{j 1} ^{m} \frac{ij}{gcd(i, j)}i1∑n​j1∑m​gcd(i,j)ij​ ∑d1n1d∑i1n∑jmi…

Consul的反熵

熵熵是衡量某个体系中事物混乱程度的一个指标&#xff0c;是从热力学第二定律借鉴过来的。熵增原理孤立系统的熵永不自动减少&#xff0c;熵在可逆过程中不变&#xff0c;在不可逆过程中增加。熵增加原理是热力学第二定律的又一种表述&#xff0c;它更为概括地指出了不可逆过程…

HDU 6833 A Very Easy Math Problem

A Very Easy Math Problem 推式子 ∑ai1n∑a21n⋯∑ax1n(∏j1xajk)f(gcd(a1,a2,…,ax))gcd(a1,a2,…,ax)\sum_{a_i 1} ^{n} \sum_{a_2 1} ^{n} \dots \sum_{a_x 1} ^{n} \left(\prod_{j 1} ^{x} a_j ^ k \right)f(gcd(a_1, a_2, \dots, a_x))\times gcd(a_1, a_2, \dots, …

通过Blazor使用C#开发SPA单页面应用程序(2)

今天我们尝试创建一个默认的Blazor应用。.Net Core 3.0需要Visual Studio 2019 的支持。安装.Net Core 3.0 预览版 SDK版本&#xff0c;注意预览版对应的VS版本&#xff0c;我这里安装的是v3.0.0-preview6。一定要开启预览选项才能使用Net Core Preview&#xff0c;在工具> …

通过Blazor使用C#开发SPA单页面应用程序(1)

2019年9月23——25日 .NET Core 3.0即将在.NET Conf上发布! .NET Core的发布及成熟重燃了.net程序员的热情和希望&#xff0c;一些.net大咖也在积极的为推动.NET Core而不懈的努力。在这次.NET Core 3.0中一项新的技术也首次出现在人们的视野&#xff0c;这就是Blazor。说起Bla…

luogu P6178 【模板】Matrix-Tree 定理

luogu P6178 【模板】Matrix-Tree 定理 1.无向图 假设现在给定一个图 G。 度数矩阵D:若存在边$ (x,y,z)(x,y,z)$ ,则 D[x][x]z;D[y][y]z;D[x][x]z;D[y][y]zD[x][x]z;D[y][y]z;D[x][x]z;D[y][y]zD[x][x]z;D[y][y]z;D[x][x]z;D[y][y]z; 邻接矩阵C:若存在边 (x,y,z)(x,y,z)(x,…

基于 WPF 模块化架构下的本地化设计实践

背景描述最近接到一个需求&#xff0c;就是要求我们的 WPF 客户端具备本地化功能&#xff0c;实现中英文多语言界面。刚开始接到这个需求&#xff0c;其实我内心是拒绝的的&#xff0c;但是没办法&#xff0c;需求是永无止境的。所以只能想办法解决这个问题。首先有必要说一下我…

HDU 6836 Expectation(矩阵生成树 + 期望)

Expectation 思路 题目要求每个生成树边权&\&&的期望值&#xff0c;假设当前这颗生成树对二进制数的第iii位有贡献&#xff0c;则这个位上的构成生成树的边权值一定是111&#xff0c;所以我们可以跑313131位二进制数的&#xff0c;矩阵树&#xff0c;每个位上的贡…

你会轻易打破规则吗?

这里是Z哥的个人公众号每周五11&#xff1a;45 按时送达当然了&#xff0c;也会时不时加个餐&#xff5e;我的第「86」篇原创敬上俗话说的好&#xff0c;不以规矩&#xff0c;不成方圆。但是有些时候&#xff0c;可能破坏规则反而是一个更有效的方式&#xff0c;这个时候到底该…

string(STL)

string 优点 常数相对较小&#xff0c;动态分配空间&#xff0c;自定义小于运算符和加法运算符。 转char 可以写成c_str()返回为char指针 获取长度 s.size()和s.lenth() 寻找某字符串第一次出现位置 s.find(t) 截取子串 s.substr(pos,len)长度不足则截取后缀。 访问…

P4449 于神之怒加强版

P4449 于神之怒加强版 推式子 ∑i1n∑j1ngcd(i,j)h\sum_{i 1} ^{n} \sum_{j 1} ^{n} gcd(i, j) ^ h i1∑n​j1∑n​gcd(i,j)h ∑d1ndh∑i1nd∑j1mdgcd(i,j)1\sum_{d 1} ^{n} d ^ h \sum_{i 1} ^{\frac{n}{d}} \sum_{j 1} ^{\frac{m}{d}}gcd(i, j) 1 d1∑n​dhi1∑dn​​…

架构杂谈《十》

常用开发模式一、瀑布式开发瀑布式开发是在1970年提出的软件开发模型&#xff0c;是一种较老的计算机软件开发模式&#xff0c;也是典型的预见性的开发模式&#xff0c;在瀑布式开发中&#xff0c;开发严格遵循预先计划的需求分析、设计、编码、集成、测试、维护的步骤进行&…