P1829 [国家集训队]Crash的数字表格 / JZPTAB
推导过程
∑i=1n∑j=1mlcm(i,j)\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} lcm(i, j)i=1∑nj=1∑mlcm(i,j)
=∑i=1n∑j=1mijgcd(i,j)= \sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \frac{ij}{gcd(i, j)}=i=1∑nj=1∑mgcd(i,j)ij
=∑d=1n1d∑i=1n∑jmij(gcd(i,j)==d)= \sum_{d = 1} ^{n} \frac{1}{d}\sum_{i = 1} ^{n} \sum_{j} ^{m} ij(gcd(i, j) == d)=d=1∑nd1i=1∑nj∑mij(gcd(i,j)==d)
=∑d=1nd∑i=1nd∑j=1mdij(gcd(i,j)==1)=\sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{m}{d}}ij(gcd(i, j) == 1)=d=1∑ndi=1∑dnj=1∑dmij(gcd(i,j)==1)
=∑d=1nd∑i=1nd∑j=1mdij∑k∣gcd(i,j)μ(k)=\sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{m}{d}}ij\sum_{k \mid gcd(i, j)} \mu(k)=d=1∑ndi=1∑dnj=1∑dmijk∣gcd(i,j)∑μ(k)
=∑d=1nd∑k=1ndk2μ(k)∑i=1nkdi∑j=1mkdj= \sum_{d = 1} ^{n} d \sum_{k = 1} ^{\frac{n}{d}}k ^ 2 \mu(k) \sum_{i = 1} ^{\frac{n}{kd}}i \sum_{j = 1} ^{\frac{m}{kd}}j=d=1∑ndk=1∑dnk2μ(k)i=1∑kdnij=1∑kdmj
=∑d=1nd∑k=1ndk2μ(k)⌊nkd⌋(⌊nkd⌋+1)2⌊mkd⌋(⌊mkd⌋+1)2= \sum_{d = 1} ^{n} d\sum_{k = 1} ^{\frac{n}{d}}k ^ 2 \mu(k)\frac{\lfloor\frac{n}{kd}\rfloor(\lfloor\frac{n}{kd}\rfloor + 1)}{2}\frac{\lfloor\frac{m}{kd}\rfloor(\lfloor\frac{m}{kd}\rfloor + 1)}{2}=d=1∑ndk=1∑dnk2μ(k)2⌊kdn⌋(⌊kdn⌋+1)2⌊kdm⌋(⌊kdm⌋+1)
所以我们只要预处理出sumk=1ndk2μ(k)sum_{k = 1} ^{\frac{n}{d}}k ^ 2 \mu(k)sumk=1dnk2μ(k),然后再进行两次分块即可。
整体复杂度nn=n\sqrt n \sqrt n = nnn=n还是线性O(n)O(n)O(n)的。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 1e7 + 10, mod = 20101009;bool st[N];vector<int> prime;int n, m;
ll mu[N];void mobius() {st[0] = st[1] = mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime.pb(i);mu[i] = -1;}for(int j = 0; j < prime.size() && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {mu[i] = (mu[i - 1] + mu[i] * i % mod * i % mod + mod) % mod;}
}ll calc1(ll l, ll r) {return (l + r) * (r - l + 1) / 2 % mod;
}ll calc2(ll n, ll m) {ll ans = 0;if(n > m) swap(n, m);for(ll l = 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));ans = (ans + (mu[r] - mu[l - 1] + mod) % mod * calc1(1, n / l) % mod * calc1(1, m / l) % mod + mod) % mod;}return ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);mobius();ll n = read(), m = read(), ans = 0;if(n > m) swap(n, m);for(ll l = 1, r; l <= n; l = r + 1) {r = min(n / (n / l), m / (m / l));ans = (ans + calc1(l, r) * calc2(n / l, m / l) % mod) % mod;}printf("%lld\n", ans);return 0;
}