The 2021 ICPC Asia Taipei Regional F. What a Colorful Wall 扫描线 + 并查集

文章目录

  • 题意:
  • 思路

传送门

题意:

给你平面nnn个矩形,每个矩形有一种颜色,依次给出矩形以及其的颜色,后面的矩形会覆盖前面的矩形,问最终有多少种颜色。

1≤n≤4000,0≤x1<x2<228,0≤y1<y2<228,1≤c≤n1\le n\le 4000,0\le x_1<x_2< 2^{28},0\le y_1<y_2< 2^{28},1\le c\le n1n4000,0x1<x2<228,0y1<y2<228,1cn

思路

首先第一个应该想到的就是倒着来,因为后面的会覆盖前面的。

其次由于坐标范围很大,不难想到离散化一下。

矩阵的问题,很容易往扫描线上靠,让后看一下nnn,显然可以想到n2lognn^2lognn2logn的算法。

矩形扫描线的第一步也是最重要的一步,就是将线段化点,因为矩形如果只存点的话,是显然不对的,比如第三个样例,如果只考虑点的话就会漏掉一种颜色。

让后就是暴力的考虑对于每个xxx,我们倒着将nnn个矩形插入,用并查集维护已经有颜色的集合,让后遍历,合并即可。

复杂度O(n2α)O(n^2\alpha)O(n2α)

#include<bits/stdc++.h>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define Mid (tr[u].l+tr[u].r>>1)
#define pb push_back
using namespace std;const int N=1000010,INF=0x3f3f3f3f,mod=1e9+7;
typedef long long LL;int n;
vector<int>ax,ay;
struct Mat {int x1,y1,x2,y2,c;
}p[N];
struct DSU {vector<int>p,se;DSU(int n) : p(n), se(n, 1) { std::iota(p.begin(), p.end(), 0); }int find(int x) {return x==p[x]? x:p[x]=find(p[x]);}bool merge(int x,int y) {int px=find(x),py=find(y);if(px==py) return false;p[px]=py;se[py]+=se[px];return true;}int size(int u) {return se[find(u)];}
};int find(vector<int>v,int x) {return lower_bound(v.begin(),v.end(),x)-v.begin();
}void solve() {scanf("%d",&n);for(int i=1;i<=n;i++) {int x1,y1,x2,y2,c;scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);p[i]={x1,y2,x2,y1,c};ax.push_back(x1);ax.push_back(x2);ay.push_back(y1);ay.push_back(y2);}sort(ax.begin(),ax.end()); ax.erase(unique(ax.begin(),ax.end()),ax.end());sort(ay.begin(),ay.end()); ay.erase(unique(ay.begin(),ay.end()),ay.end());for(int i=1;i<=n;i++) {int x1=find(ax,p[i].x1),y1=find(ay,p[i].y1);int x2=find(ax,p[i].x2),y2=find(ay,p[i].y2);p[i]={x1,y1,x2,y2,p[i].c};}vector<int>st(n+1,0);for(int i=0;i<ax.size();i++) {DSU dsu(ax.size()*2+1);for(int j=n;j>=1;j--) {int x1=p[j].x1,y1=p[j].y1;int x2=p[j].x2,y2=p[j].y2;if(x1<=i&&i<x2) {for(int k=dsu.find(y1);k<y2;k=dsu.find(k)) {dsu.merge(k,k+1);st[p[j].c]=1;}}}}cout<<count(st.begin(),st.end(),1)<<endl;
}int main() {int _=1;while(_--) {solve();}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314411.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【活动】厦门.NET俱乐部 省上云开发者专场

十年磨一剑&#xff0c;厦门.NET俱乐部诚挚邀请您相约软件园二期创驿站&#xff0c;参加云重启|厦门.NET俱乐部省上云开发者专场。活动干货满满&#xff0c;更有精美礼品&#xff0c;厦门.NET俱乐部期待与您“厦门论剑”。详情请点击图片或直接阅读原文报名

mobius初步

求 ∑i1n∑j1m(gcd(i,j)1)\sum_{i 1} ^{n} \sum_{j 1} ^{m} (gcd(i, j) 1)∑i1n​∑j1m​(gcd(i,j)1) 我们引入一个知识∑d∣nμ(d)(n1)\sum_{d \mid n} \mu(d) (n 1)∑d∣n​μ(d)(n1) 所以gcd(i,j)∑d∣gcd(i,j)μ(d)gcd(i, j) \sum_{d \mid gcd(i, j)} \mu(d)gcd(i,j)…

腾讯物联TencentOS tiny上云初探

2017年中旬曾写过一篇关于物联网平台的文章《微软最完善&#xff0c;百度最“小气” 看微软阿里百度三大物联网云平台对比》。现在已经过去两年了&#xff0c;物联网的格局又发生了不少的变化。不过针对腾讯来说&#xff0c;其物联网平台发轫的时间绝不算晚&#xff0c;基本就是…

P2257 YY的GCD (莫比乌斯反演)

P2257 YY的GCD 思路 求∑inn∑j1mgcd(i,j)k(k∈prime)\sum_{i n} ^{n} \sum_{j 1} ^{m} gcd(i, j) k (k \in prime)∑inn​∑j1m​gcd(i,j)k(k∈prime) 对上面式子进行化简&#xff1a; ∑k1n∑i1nk∑j1mkgcd(i,j)1,k∈prime \sum_{k 1} ^{n} \sum_{i 1} ^{\frac{n}{k}…

ASP.NET Core on K8S深入学习(3-2)DaemonSet与Job

本篇已加入《.NET Core on K8S学习实践系列文章索引》&#xff0c;可以点击查看更多容器化技术相关系列文章。上一篇《3-1 Deployment》中介绍了Deployment&#xff0c;它可以满足我们大部分时候的应用部署&#xff08;无状态服务类容器&#xff09;&#xff0c;但是针对一些特…

CF535C Tavas and Karafs 二分 + 结论

传送门 题意&#xff1a; 定义第iii个数是a(i−1)∗ba(i-1)*ba(i−1)∗b&#xff0c;先有qqq个询问&#xff0c;每次询问给你l,t,ml,t,ml,t,m代表你可以操作ttt次&#xff0c;每次可以将最多mmm个数减111&#xff0c;每次都需要回答从lll开始&#xff0c; 最远到第几个数&…

Asp.Net Core WebAPI+PostgreSQL部署在Docker中

PostgreSQL是一个功能强大的开源数据库系统。它支持了大多数的SQL:2008标准的数据类型&#xff0c;包括整型、数值值、布尔型、字节型、字符型、日期型、时间间隔型和时间型&#xff0c;它也支持存储二进制的大对像&#xff0c;包括图片、声音和视频。PostgreSQL对很多高级开发…

P2260 [清华集训2012]模积和,P2834 能力测验(二维除法分块)

P2260 [清华集训2012]模积和 推导过程 我们假定n<mn < mn<m ∑i1n∑j1m(nmodi)(mmodj),i̸j\sum_{i 1} ^{n} \sum_{j 1} ^{m} (n\mod i)(m \mod j), i \not ji1∑n​j1∑m​(nmodi)(mmodj),i​j ∑i1n∑j1m(nmodi)(mmodj)−∑k1n(nmodk)(mmodk) \sum_{i 1} ^{n…

F - Snuke‘s Coloring 2 矩形周长 + 栈

传送门 题意&#xff1a; 目前有一个左下角(0,0)(0,0)(0,0)右上角(W,H)(W,H)(W,H)的矩形&#xff0c;起初矩形内部都是白色的。 现在给你nnn个点&#xff0c;每次在以下操作中选择一种&#xff1a; 将矩形x<xix<x_ix<xi​的区域染黑将矩形x>xix>x_ix>xi​…

博客园升级有感一点建议

实践出真知这几天在园子里面最热闹的事情各位都知道吧&#xff1f;没错&#xff0c;我说的就是博客园升级事件&#xff0c;有不熟悉的朋友吗&#xff0c;没关系&#xff0c;我给你搬运好了&#xff0c;请回顾一下Powered by .NET Core 系列博文&#xff1a;【故障公告】发布 .N…

P1447 [NOI2010]能量采集(mobius反演)

P1447 [NOI2010]能量采集 式子化简 显然题目就是要我们求∑i1n∑j1m2gcd(i,j)−1\sum_{i 1} ^{n} \sum_{j 1} ^{m} 2gcd(i, j) - 1∑i1n​∑j1m​2gcd(i,j)−1 2∑i1n∑j1mgcd(i,j)−nm 2\sum_{i 1} ^{n} \sum_{j 1} ^{m} gcd(i, j) - nm2i1∑n​j1∑m​gcd(i,j)−nm 转…

AtCoder Regular Contest 063 E - Integers on a Tree 构造 + 二分图染色

传送门 题意&#xff1a; 给你一颗nnn个点的树&#xff0c;初始的时候某些点有权值pip_ipi​&#xff0c;现在你需要给没给定的点赋一个权值&#xff0c;使得任意相邻点权值之差的绝对值等于111&#xff0c;若无解输出NoNoNo。 1≤n≤1e5,1≤k≤n,0≤pj≤1e51\le n\le 1e5,1\…

.Net Core2.1 秒杀项目一步步实现CI/CD(Centos7)系列二:k8s高可用集群搭建总结以及部署API到k8s...

前言&#xff1a;本系列博客又更新了&#xff0c;是博主研究很长时间&#xff0c;亲自动手实践过后的心得&#xff0c;k8s集群是购买了5台阿里云服务器部署的&#xff0c;这个集群差不多搞了一周时间&#xff0c;关于k8s的知识点&#xff0c;我也是刚入门&#xff0c;这方面的知…

追债之旅(Dijkstra最短路)

追债之旅 思路 最短路问题&#xff0c;考虑DijkstraDijkstraDijkstra&#xff0c;用一个二维dis[i][j]dis[i][j]dis[i][j]数组&#xff0c;表示第iii天到达jjj号点的最小花费&#xff0c;disdisdis数组的更新方式改为if(dis[day][to]>dis[day−1][now]value[to]cost[day])…

Educational DP Contest U - Grouping 状压dp

传送门 题意&#xff1a; 给你nnn个物品&#xff0c;让你将其分成任意组&#xff0c;在同一个组内的i,ji,ji,j会获得ai,ja_{i,j}ai,j​的收益&#xff0c;让你选择一种分组方案使得收益最大。 1≤n≤16,∣ai,j∣≤1e91\le n\le 16,|a_{i,j}|\le 1e91≤n≤16,∣ai,j​∣≤1e9 …

使用Asp.net Core3Blazor 的全栈式网站开发体验

最新的微软视频&#xff1a; Full stack web development with ASP.NET Core 3.0 and Blazor - BRK3017 以下是重要步骤截图配注解&#xff0c;注意图多杀猫&#xff1a;此图是.Net Core3的全栈解决方案示意图。话说此图的第一部分Client 是可以灵活替换的&#xff0c;哪怕它是…

P3327 [SDOI2015]约数个数和 (mobius反演)

P3327 [SDOI2015]约数个数和 推导过程 求∑i1n∑j1md(ij)\sum_{i 1} ^{n} \sum_{j 1} ^{m} d(ij)∑i1n​∑j1m​d(ij) ∑i1n∑j1m∑x∣i∑y∣jgcd(x,y)1 \sum_{i 1} ^{n} \sum_{j 1} ^{m} \sum_{x \mid i} \sum_{y \mid j} gcd(x, y) 1i1∑n​j1∑m​x∣i∑​y∣j∑​gc…

算法学习

文章目录摘要基础算法二分倍增前缀和构造图论bfsdfs\dfs序同余最短路差分约束LCA基环树dp线性dp概率期望背包dp树形dp数位dp状压dp区间dp计数dp数据结构优化dp数据结构树上启发式合并主席树Splay线段树分治Kruskal重构树数论基础数论摘要 发现前面学的东西都忘得差不多了&…

k8s集群部分常见问题处理

目录部分常见问题处理Coredns CrashLoopBackOff 导致无法成功添加工作节点的问题添加工作节点时提示token过期kubectl 执行命令报“The connection to the server localhost:8080 was refused”网络组件flannel无法完成初始化部分节点无法启动pod最后部分常见问题处理结合我们上…

Hyper-V + CentOS7 网络设置(视频教程)

Hyper-V Centos7 网络设置 本文目标&#xff1a;1、 设置虚拟机固定IP&#xff1a;无论物理机的网络环境怎么变化&#xff0c;都需要保持虚拟机的IP地址不变&#xff0c;保证本机使用xshell等终端访问始终用同一个IP地址2、物理机可访问虚拟机&#xff0c;虚拟机是否可访问网络…