腾讯物联TencentOS tiny上云初探

2017年中旬曾写过一篇关于物联网平台的文章《微软最完善,百度最“小气” 看微软阿里百度三大物联网云平台对比》。现在已经过去两年了,物联网的格局又发生了不少的变化。不过针对腾讯来说,其物联网平台发轫的时间绝不算晚,基本就是伴随“智能硬件”而崛起的,早在2014年就发布了“QQ物联●智能硬件开放平台”和“微信硬件平台”。不过这和我心目中的那个“物联网平台”还是有些差别的,直到2019年五月腾讯在数字生态大会上,正式发布了物联网开发者社区平台-- Tencent Things Network(“旨在面向开发者提供开放的IoT网络服务,社区门户、以及微信小程序、IoT Explorer、IoT Hub等服务集成能力,从而帮助开发者快速创建丰富的物联网行业应用。”),才感觉腾讯终于在物联网领域真正发力了。

无论是国外微软的Window 10 IoT + Windows Azure IoT云平台,谷歌的Android Things + Google Cloud IoT云平台,还是国内华为的LiteOS(鸿蒙)+  OceanConnect物联网平台,阿里的AliOS Things + 阿里云物联网平台,似乎物联网嵌入式平台 + 物联网云平台成了一个大公司物联网体系的一个标配。所以腾讯在推出“真正”的物联网云平台(IoT Explorer + IoT hub)不久,又推出了物联网嵌入式系统 – TencentOS tiny。

TencentOS tiny定位就是轻量级物联网嵌入式系统,和liteOS的定位有些类似。目前TencentOS tiny还在内测阶段,有幸相对早期参与了相关的内测。下面简单介绍一下TencentOS tiny如何和IoT Explorer对接的。

自从亚马逊的物联网云平台以面向对象的理念构建设备的模型后,无论是百度的物接入,还是阿里的物模型,及腾讯IoT Explorer的数据模板,都是一脉相承的。

所以我们依然先在物联网云平台(IoT Explorer)创建产品的属性。

 640?wx_fmt=png

创建了产品之后,直接创建一个设备即可。

硬件平台我们采用了腾讯提供的TencentOS_tiny_EVB_MX开发板。

 640?wx_fmt=png

和阿里的三元组一样,对应云端的设备也需要三个元素,一个是产品ID,一个是设备名称,一个设备秘钥。

 640?wx_fmt=png

把相关程序部署到设备后,在串口调试助手中会看到相关的调试信息。

 640?wx_fmt=png

相对于其他物联网云平台,腾讯云的物联网平台的调试功能让人眼前一亮,不仅虚拟设备可以是一个手机APP程序(通过扫码可以快速创建出对应的虚拟设备)。WEB的云端调试界面也是非常直观可视化的,可以直接和入云的设备互动。

 640?wx_fmt=png

其日志功能也比较强大,可以非常直接的看到上行和下行通信的内容(阿里的还需要进一步解析才可以看到)。

 640?wx_fmt=png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314408.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P2257 YY的GCD (莫比乌斯反演)

P2257 YY的GCD 思路 求∑inn∑j1mgcd(i,j)k(k∈prime)\sum_{i n} ^{n} \sum_{j 1} ^{m} gcd(i, j) k (k \in prime)∑inn​∑j1m​gcd(i,j)k(k∈prime) 对上面式子进行化简: ∑k1n∑i1nk∑j1mkgcd(i,j)1,k∈prime \sum_{k 1} ^{n} \sum_{i 1} ^{\frac{n}{k}…

ASP.NET Core on K8S深入学习(3-2)DaemonSet与Job

本篇已加入《.NET Core on K8S学习实践系列文章索引》,可以点击查看更多容器化技术相关系列文章。上一篇《3-1 Deployment》中介绍了Deployment,它可以满足我们大部分时候的应用部署(无状态服务类容器),但是针对一些特…

CF535C Tavas and Karafs 二分 + 结论

传送门 题意: 定义第iii个数是a(i−1)∗ba(i-1)*ba(i−1)∗b,先有qqq个询问,每次询问给你l,t,ml,t,ml,t,m代表你可以操作ttt次,每次可以将最多mmm个数减111,每次都需要回答从lll开始, 最远到第几个数&…

Asp.Net Core WebAPI+PostgreSQL部署在Docker中

PostgreSQL是一个功能强大的开源数据库系统。它支持了大多数的SQL:2008标准的数据类型,包括整型、数值值、布尔型、字节型、字符型、日期型、时间间隔型和时间型,它也支持存储二进制的大对像,包括图片、声音和视频。PostgreSQL对很多高级开发…

P2260 [清华集训2012]模积和,P2834 能力测验(二维除法分块)

P2260 [清华集训2012]模积和 推导过程 我们假定n<mn < mn<m ∑i1n∑j1m(nmodi)(mmodj),i̸j\sum_{i 1} ^{n} \sum_{j 1} ^{m} (n\mod i)(m \mod j), i \not ji1∑n​j1∑m​(nmodi)(mmodj),i​j ∑i1n∑j1m(nmodi)(mmodj)−∑k1n(nmodk)(mmodk) \sum_{i 1} ^{n…

F - Snuke‘s Coloring 2 矩形周长 + 栈

传送门 题意&#xff1a; 目前有一个左下角(0,0)(0,0)(0,0)右上角(W,H)(W,H)(W,H)的矩形&#xff0c;起初矩形内部都是白色的。 现在给你nnn个点&#xff0c;每次在以下操作中选择一种&#xff1a; 将矩形x<xix<x_ix<xi​的区域染黑将矩形x>xix>x_ix>xi​…

博客园升级有感一点建议

实践出真知这几天在园子里面最热闹的事情各位都知道吧&#xff1f;没错&#xff0c;我说的就是博客园升级事件&#xff0c;有不熟悉的朋友吗&#xff0c;没关系&#xff0c;我给你搬运好了&#xff0c;请回顾一下Powered by .NET Core 系列博文&#xff1a;【故障公告】发布 .N…

P1447 [NOI2010]能量采集(mobius反演)

P1447 [NOI2010]能量采集 式子化简 显然题目就是要我们求∑i1n∑j1m2gcd(i,j)−1\sum_{i 1} ^{n} \sum_{j 1} ^{m} 2gcd(i, j) - 1∑i1n​∑j1m​2gcd(i,j)−1 2∑i1n∑j1mgcd(i,j)−nm 2\sum_{i 1} ^{n} \sum_{j 1} ^{m} gcd(i, j) - nm2i1∑n​j1∑m​gcd(i,j)−nm 转…

AtCoder Regular Contest 063 E - Integers on a Tree 构造 + 二分图染色

传送门 题意&#xff1a; 给你一颗nnn个点的树&#xff0c;初始的时候某些点有权值pip_ipi​&#xff0c;现在你需要给没给定的点赋一个权值&#xff0c;使得任意相邻点权值之差的绝对值等于111&#xff0c;若无解输出NoNoNo。 1≤n≤1e5,1≤k≤n,0≤pj≤1e51\le n\le 1e5,1\…

.Net Core2.1 秒杀项目一步步实现CI/CD(Centos7)系列二:k8s高可用集群搭建总结以及部署API到k8s...

前言&#xff1a;本系列博客又更新了&#xff0c;是博主研究很长时间&#xff0c;亲自动手实践过后的心得&#xff0c;k8s集群是购买了5台阿里云服务器部署的&#xff0c;这个集群差不多搞了一周时间&#xff0c;关于k8s的知识点&#xff0c;我也是刚入门&#xff0c;这方面的知…

追债之旅(Dijkstra最短路)

追债之旅 思路 最短路问题&#xff0c;考虑DijkstraDijkstraDijkstra&#xff0c;用一个二维dis[i][j]dis[i][j]dis[i][j]数组&#xff0c;表示第iii天到达jjj号点的最小花费&#xff0c;disdisdis数组的更新方式改为if(dis[day][to]>dis[day−1][now]value[to]cost[day])…

Educational DP Contest U - Grouping 状压dp

传送门 题意&#xff1a; 给你nnn个物品&#xff0c;让你将其分成任意组&#xff0c;在同一个组内的i,ji,ji,j会获得ai,ja_{i,j}ai,j​的收益&#xff0c;让你选择一种分组方案使得收益最大。 1≤n≤16,∣ai,j∣≤1e91\le n\le 16,|a_{i,j}|\le 1e91≤n≤16,∣ai,j​∣≤1e9 …

使用Asp.net Core3Blazor 的全栈式网站开发体验

最新的微软视频&#xff1a; Full stack web development with ASP.NET Core 3.0 and Blazor - BRK3017 以下是重要步骤截图配注解&#xff0c;注意图多杀猫&#xff1a;此图是.Net Core3的全栈解决方案示意图。话说此图的第一部分Client 是可以灵活替换的&#xff0c;哪怕它是…

P3327 [SDOI2015]约数个数和 (mobius反演)

P3327 [SDOI2015]约数个数和 推导过程 求∑i1n∑j1md(ij)\sum_{i 1} ^{n} \sum_{j 1} ^{m} d(ij)∑i1n​∑j1m​d(ij) ∑i1n∑j1m∑x∣i∑y∣jgcd(x,y)1 \sum_{i 1} ^{n} \sum_{j 1} ^{m} \sum_{x \mid i} \sum_{y \mid j} gcd(x, y) 1i1∑n​j1∑m​x∣i∑​y∣j∑​gc…

算法学习

文章目录摘要基础算法二分倍增前缀和构造图论bfsdfs\dfs序同余最短路差分约束LCA基环树dp线性dp概率期望背包dp树形dp数位dp状压dp区间dp计数dp数据结构优化dp数据结构树上启发式合并主席树Splay线段树分治Kruskal重构树数论基础数论摘要 发现前面学的东西都忘得差不多了&…

k8s集群部分常见问题处理

目录部分常见问题处理Coredns CrashLoopBackOff 导致无法成功添加工作节点的问题添加工作节点时提示token过期kubectl 执行命令报“The connection to the server localhost:8080 was refused”网络组件flannel无法完成初始化部分节点无法启动pod最后部分常见问题处理结合我们上…

Hyper-V + CentOS7 网络设置(视频教程)

Hyper-V Centos7 网络设置 本文目标&#xff1a;1、 设置虚拟机固定IP&#xff1a;无论物理机的网络环境怎么变化&#xff0c;都需要保持虚拟机的IP地址不变&#xff0c;保证本机使用xshell等终端访问始终用同一个IP地址2、物理机可访问虚拟机&#xff0c;虚拟机是否可访问网络…

P1829 [国家集训队]Crash的数字表格(推了好久的mobius反演)

P1829 [国家集训队]Crash的数字表格 / JZPTAB 推导过程 ∑i1n∑j1mlcm(i,j)\sum_{i 1} ^{n} \sum_{j 1} ^{m} lcm(i, j)i1∑n​j1∑m​lcm(i,j) ∑i1n∑j1mijgcd(i,j) \sum_{i 1} ^{n} \sum_{j 1} ^{m} \frac{ij}{gcd(i, j)}i1∑n​j1∑m​gcd(i,j)ij​ ∑d1n1d∑i1n∑jmi…

Consul的反熵

熵熵是衡量某个体系中事物混乱程度的一个指标&#xff0c;是从热力学第二定律借鉴过来的。熵增原理孤立系统的熵永不自动减少&#xff0c;熵在可逆过程中不变&#xff0c;在不可逆过程中增加。熵增加原理是热力学第二定律的又一种表述&#xff0c;它更为概括地指出了不可逆过程…

HDU 6833 A Very Easy Math Problem

A Very Easy Math Problem 推式子 ∑ai1n∑a21n⋯∑ax1n(∏j1xajk)f(gcd(a1,a2,…,ax))gcd(a1,a2,…,ax)\sum_{a_i 1} ^{n} \sum_{a_2 1} ^{n} \dots \sum_{a_x 1} ^{n} \left(\prod_{j 1} ^{x} a_j ^ k \right)f(gcd(a_1, a_2, \dots, a_x))\times gcd(a_1, a_2, \dots, …