杜教筛模板(P4213 【模板】杜教筛(Sum))

P4213 【模板】杜教筛(Sum)

套路推式子

求s(n)=∑i=1nf(i)∑i=1n(f∗g)(i)=∑i=1n∑d∣if(d)g(id)=∑d=1n∑i=1⌊nd⌋f(i)g(d)=∑d=1ng(d)S(⌊nd⌋)=g(1)S(n)+∑d=2ng(d)S(⌊nd⌋)则有g(1)S(n)=∑i=1n(f∗g)(i)−∑d=2ng(d)S(⌊nd⌋)求s(n) = \sum_{i = 1} ^{n}f(i)\\ \sum_{i = 1} ^{n} (f*g)(i)\\ = \sum_{i = 1} ^{n} \sum_{d\mid i} f(d) g({\frac{i}{d}})\\ = \sum_{d = 1} ^{n} \sum_{i = 1} ^{\lfloor\frac{n}{d}\rfloor}f(i)g(d)\\ = \sum_{d = 1} ^{n}g(d) S(\lfloor\frac{n}{d}\rfloor)\\ = g(1)S(n) + \sum_{d = 2} ^{n} g(d) S(\lfloor\frac{n}{d}\rfloor)\\ 则有g(1)S(n) = \sum_{i = 1} ^{n} (f*g)(i) - \sum_{d = 2} ^{n} g(d) S(\lfloor\frac{n}{d}\rfloor) s(n)=i=1nf(i)i=1n(fg)(i)=i=1ndif(d)g(di)=d=1ni=1dnf(i)g(d)=d=1ng(d)S(dn)=g(1)S(n)+d=2ng(d)S(dn)g(1)S(n)=i=1n(fg)(i)d=2ng(d)S(dn)
莫比乌斯函数求和
对S(n)=∑i=1Nμ(i)∑i=1n(I∗μ)(i)=∑d=1nS(nd)1=S(n)+∑d=2nS(nd)S(n)=1−∑d=2nS(nd)对S(n) = \sum_{i = 1} ^{N} \mu(i)\\ \sum_{i = 1} ^{n}(I * \mu)(i)\\ = \sum_{d = 1} ^{n} S(\frac{n}{d})\\ 1 = S(n) + \sum_{d = 2} ^{n} S(\frac{n}{d})\\ S(n) = 1 - \sum_{d = 2} ^{n} S(\frac{n}{d}) S(n)=i=1Nμ(i)i=1n(Iμ)(i)=d=1nS(dn)1=S(n)+d=2nS(dn)S(n)=1d=2nS(dn)

欧拉函数求和
对S(n)=∑i=1nϕ(i)∑i=1n(I∗ϕ)(i)=∑d=1nS(nd)=S(n)+∑d=2nϕ(nd)S(n)=n(n+1)2−∑d=2nϕ(nd)对S(n) = \sum_{i = 1} ^{n} \phi(i)\\ \sum_{i = 1} ^{n} (I * \phi)(i)\\ = \sum_{d = 1} ^{n} S(\frac{n}{d})\\ = S(n) + \sum_{d = 2} ^{n} \phi(\frac{n}{d})\\ S(n) = \frac{n (n + 1)}{2} - \sum_{d = 2} ^{n} \phi(\frac{n}{d}) S(n)=i=1nϕ(i)i=1n(Iϕ)(i)=d=1nS(dn)=S(n)+d=2nϕ(dn)S(n)=2n(n+1)d=2nϕ(dn)

代码

/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-')    f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 5e6 + 10;ll phi[N], mu[N];
int prime[N], cnt = 0;
bool st[N];void init() {phi[1] = mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;phi[i] = i - 1;}for(int j = 0; j < cnt && i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) {phi[i * prime[j]] = phi[i] * prime[j];break;}phi[i * prime[j]] = phi[i] * (prime[j] - 1);mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) mu[i] += mu[i - 1], phi[i] += phi[i - 1];
}unordered_map<int, ll> ans_phi;
unordered_map<int, ll> ans_mu;ll get_phi(ll x) {if(x < N) return phi[x];if(ans_phi[x]) return ans_phi[x];ll ans = x * (x + 1) >> 1;for(ll l = 2, r; l <= x; l = r + 1) {r = x / (x / l);ans -= (r - l + 1) * get_phi(x / l);}return ans_phi[x] = ans;
}ll get_mu(ll x) {if(x < N) return mu[x];if(ans_mu[x]) return ans_mu[x];int ans = 1;for(ll l = 2, r; l <= x; l = r + 1) {r = x / (x / l);ans -= (r - l + 1) * get_mu(x / l);}return ans_mu[x] = ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int T = read();while(T--) {ll n = read();printf("%lld %lld\n", get_phi(n), get_mu(n));}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314367.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[2020多校A层12.1]树(倍增/单调栈/dfs栈)

[2020多校A层12.1]树 求解树上从u到v的最长贪心上升序列&#xff0c;也就是只要有比它大的就选择它&#xff0c;可以发现这个问题性质&#xff0c;就是每个点对应了唯一的一个第一个比它大的点&#xff0c;那么我们可以向它们之间连边&#xff0c;然后问题就转化为求解从当前点…

通过Blazor使用C#开发SPA单页面应用程序(3)

通过Blazor使用C#开发SPA单页面应用程序(1)通过Blazor使用C#开发SPA单页面应用程序(2)今天我们来看看Blazor开发的一些基本知识。Blazor中组件的基本结构可以分为3个部分&#xff0c;如下所示&#xff1a;//Counter.razor//Directives section 指令部分page "/counter&qu…

NC14250 MMSet2

MMSet2 思路 这道题目显然能够通过31051063 \times 10 ^ 5 \times 10 ^ 63105106的复杂度来暴力&#xff0c;这显然不能达到题目要求的复杂度&#xff0c;因此我们可以对题目要求我们计算的东西进行转换。 某个点到所有点集的最大距离最小&#xff0c;这就有点像是重心的求法…

[2020多校A层12.3]虚构推理(语言/二分/数据结构)

[2020多校A层12.3]虚构推理 给定n个时钟精确到秒&#xff0c;求解一个时间&#xff0c;使得它的指针和所有其他的时钟时针和分针分别的角度最大值最小。 一道毒瘤的二分题&#xff0c;看到最大值最小&#xff0c;我们很容易想到二分答案。然后我们的关键是check&#xff0c;那…

ASP.NET CORE 2.* 利用集成测试框架覆盖HttpClient相关代码

ASP.NET CORE 集成测试官方介绍我的asp.net core 项目里面大部分功能都是去调用别人的API &#xff0c;大量使用HttpClient&#xff0c;公司单元测试覆盖率要求95%以上&#xff0c;很难做到不mock HttpClient 达到这个指数。以下方法是我自己总结的在单元测试里 mock httpClien…

Expected Value Again(咕咕咕)

Expected Value Again 神题&#xff01;&#xff01;&#xff01;

[51 nod 1238] 最小公倍数之和 V3(杜教筛)

1238 最小公倍数之和 V3 推式子 ∑i1n∑j1nlcm(i,j)∑i1n∑j1nijgcd(i,j)∑d1n∑i1n∑j1nijd(gcd(i,j)d)∑d1nd∑i1nd∑j1ndij(gcd(i,j)1)∑d1nd∑i1nd∑j1ndij∑k∣gcd(i,j)μ(k)∑d1nd∑k1ndk2μ(k)∑i1ndk∑j1ndkij\sum_{i 1} ^{n} \sum_{j 1} ^{n} lcm(i, j)\\ \sum_{i…

Let's Encrypt网站推出中文版

如今很多网站都强制使用 HTTPS 加密协议访问&#xff0c;安全性有了很大的提高&#xff0c;最起码在数据传输的初始阶段数据包不会被劫持&#xff0c;保证了客户端与服务器端的通讯安全性。说到 HTTPS 加密协议&#xff0c;就不得不提 Let’s Encrypt。Let’s Encrypt 是一家不…

动态分配内存

https://www.runoob.com/cplusplus/cpp-dynamic-memory.html

[51 nod 123] 最大公约数之和 V3(杜教筛)

1237 最大公约数之和 V3 推式子 ∑i1n∑j1ngcd(i,j)∑d1nd∑i1n∑j1n(gcd(i,j)d)∑d1nd∑i1nd∑j1nd(gcd(i,j)1)∑d1nd∑i1nd∑j1nd∑k∣gcd(i,j)μ(k)∑d1nd∑k1ndμ(k)∑i1nkd∑j1nkd1套路地设tkd∑t1n(⌊nt⌋)2∑d∣tdμ(td)∑t1n(⌊nt⌋)2ϕ(t)接下来就是杜教筛求∑i1nϕ(…

使用WebDeploy部署远程IIS网站

目录 使用WebDeploy部署远程IIS网站后台服务部署服务器配置本地WebDeploy发布文件配置前端页面部署WebDeploy服务端配置WebDeploy发布文件配置使用WebDeploy部署远程网站后台服务部署服务器配置打开IIS管理器(开始->控制面板->管理工具->IIS管理器)添加网站(右键网站…

数列分块入门

文章目录数列分块入门1数列分块入门2数列分块入门3数列分块入门4数列分块入门5数列分块入门6数列分块入门7数列分块入门8数列分块入门9数列分块入门1 区间加&#xff0c;单点查询 分块后&#xff0c;维护标记&#xff0c;零散块暴力加&#xff0c;查询时输出值加标记 数列分块…

CF436F Banners(分块/凸包/单调队列)

CF436F Banners 首先有n个物品分别有ai和bi&#xff0c;然后定义价值为 c∗wp∗(ai大于p且bi小于c的用户个数)c*wp*(ai大于p且bi小于c的用户个数)c∗wp∗(ai大于p且bi小于c的用户个数) 然后我们需要求解对于每一个c的最大价值和对应的p 首先我们先枚举c&#xff0c;然后每次加…

译 | 改进 Visual Studio 及 Windows 上 .NET Core 的安装体验

点击上方蓝字关注“汪宇杰博客”原文&#xff1a;Lee Coward翻译&#xff1a;Edi Wang导语Visual Studio 2019 16.3 和 .NET Core 3.0 Preview 7 改进了 Windows 上 .NET Core 的安装体验。目标是减少计算机上可能存在的 .NET Core 版本的数量。这些改进基于客户反馈和我们自己…

F. Ivan and Burgers(前缀线性基模板)

前缀线性基模板 F. Ivan and Burgers /*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc.h>#define mp make_pair #define pb push_back #define endl \n #define mid (l r >> 1) #define lson rt << 1, l, …

P2231 [HNOI2002]跳蚤(裴蜀定理/莫比乌斯反演)

P2231 [HNOI2002]跳蚤 给定一个长度为n1的一列数&#xff0c;第n1位为m&#xff0c;前n位小于m 求解使得他n1个数的加减可以凑出1的方案数 首先可以凑出1&#xff0c;这显然是裴蜀定理&#xff0c;推一推就发现他要求所有数的gcd为1 那么对于要求gcd恰为x的计数问题&#xff…

HDU 6579 Operation (前缀线性基模板题)

Operation 思路 只要套上前缀线性基的板子然后按照题意模拟即可&#xff0c;前缀线性基模板题了。 代码 /*Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc.h>#define mp make_pair #define pb push_back #define endl …

SonarQube系列三、Jenkins集成SonarQube(dotnetcore篇)

来源&#xff1a;https://www.cnblogs.com/7tiny/p/11348785.html【前言】本系列主要讲述sonarqube的安装部署以及如何集成jenkins自动化分析.netcore项目。目录如下&#xff1a;SonarQube系列一、Linux安装与部署SonarQube系列二、分析dotnet core/C#代码SonarQube系列三、Jen…

[2020多校A层11.22]party(概率期望/近似)

[2020多校A层11.22]party 非常巧妙的一个概率期望问题&#xff0c;其实运用的还是近似的思想 现在有n个物品&#xff0c;每次一个人有pi的概率选中这个物品&#xff0c;然后可以进行猜测&#xff0c;但是无论是否猜中都继续游戏&#xff0c;直到所有人都被猜中&#xff0c;求解…

E. Beautiful Subarrays(思维 01 trie 树)

E. Beautiful Subarrays 思路 显然有ai⨁ai1⨁……⨁an(a1⨁a2⨁……⨁an)⨁(a1⨁a2⨁……⨁ai−1)a_i\bigoplus a_{i 1} \bigoplus ……\bigoplus a_{n} (a_1 \bigoplus a_2 \bigoplus……\bigoplus a_{n}) \bigoplus (a_1 \bigoplus a_2 \bigoplus …… \bigoplus a_{i -…