Convex Hull
gay(i)={0ifi=k×x×x,x>k,k>1i×ielse}求∑i=1n∑j=1igay(j)=∑i=1n(n−i+1)gay(i)=∑i=1n(n−i+1)μ2(i)i2因为μ2(n)=∑i2∣nμ(i),容斥定理显然得到有原式=∑i=1n(n−i+1)i2∑j2∣iμ(j)=(n+1)∑i=1n∑j2∣iμ(j)−∑i=1ni3∑j2∣iμ(j)=(n+1)∑j=1nμ(j)∑j2∣ii2−∑j=1nμ(j)∑j2∣ii3=(n+1)∑j=1nμ(j)∑t=1nj2t2j4−∑j=1nμ(j)∑t=1nj2t3j6=∑i=1nμ(i)∑j=1ni2(i4j2(n+1)−i6j3)gay(i) =\left\{ \begin{matrix} 0&if&i = k \times x \times x, x > k, k > 1\\ i \times i&else \end{matrix} \right\}\\ 求\sum_{i = 1} ^{n} \sum_{j = 1} ^{i}gay(j)\\ =\sum_{i = 1} ^{n}(n - i + 1) gay(i)\\ =\sum_{i = 1} ^{n}(n - i + 1)\mu ^2(i) i ^2\\ 因为\mu ^2(n) = \sum_{i ^ 2 \mid n} \mu(i),容斥定理显然得到\\ 有原式= \sum_{i = 1} ^{n} (n - i + 1) i ^ 2 \sum_{j ^2 \mid i} \mu(j)\\ =(n + 1) \sum_{i = 1} ^{n} \sum_{j ^ 2 \mid i} \mu(j) - \sum_{i = 1} ^{n} i ^ 3 \sum_{j ^ 2 \mid i} \mu(j)\\ =(n + 1) \sum_{j = 1} ^{\sqrt n} \mu(j) \sum_{j ^ 2 \mid i} i ^ 2 - \sum_{j = 1} ^{\sqrt n} \mu(j) \sum_{j ^ 2 \mid i} i ^ 3\\ = (n + 1) \sum_{j= 1} ^{\sqrt n} \mu(j) \sum_{t = 1} ^{\frac{n}{j ^ 2}} t ^ 2 j ^ 4 - \sum_{j = 1} ^{\sqrt n} \mu(j) \sum_{t = 1} ^{\frac{n}{j ^ 2}} t ^ 3 j ^ 6\\ =\sum_{i = 1} ^{\sqrt n} \mu(i) \sum_{j = 1} ^{\frac{n}{i ^ 2}}(i ^ 4 j ^ 2 (n + 1) - i ^ 6 j ^ 3)\\ gay(i)={0i×iifelsei=k×x×x,x>k,k>1}求i=1∑nj=1∑igay(j)=i=1∑n(n−i+1)gay(i)=i=1∑n(n−i+1)μ2(i)i2因为μ2(n)=i2∣n∑μ(i),容斥定理显然得到有原式=i=1∑n(n−i+1)i2j2∣i∑μ(j)=(n+1)i=1∑nj2∣i∑μ(j)−i=1∑ni3j2∣i∑μ(j)=(n+1)j=1∑nμ(j)j2∣i∑i2−j=1∑nμ(j)j2∣i∑i3=(n+1)j=1∑nμ(j)t=1∑j2nt2j4−j=1∑nμ(j)t=1∑j2nt3j6=i=1∑nμ(i)j=1∑i2n(i4j2(n+1)−i6j3)