P6810 「MCOI-02」Convex Hull 凸包
思路
∑i=1n∑j=1mτ(i)τ(j)τ(gcd(i,j))∑d=1nτ(d)∑i=1nd∑j=1mdτ(id)τ(id)[gcd(i,j)==1]∑d=1nτ(d)∑k=1ndμ(k)∑i=1ndk∑j=1mdkτ(idk)τ(idk)t=kd∑t=1n∑i=1ntτ(it)∑j=1mtτ(jt)∑d∣tτ(d)μ(td)∑d∣tτ(d)μ(td)=τ∗μ,有τ(n)=∑d∣n=∑d∣n1×1=I∗I所以有τ∗μ=I∗I∗μ=I∗ϵ=I=1原式:∑t=1n∑i=1ntτ(it)∑j=1mtτ(jt)所以只要预处理出后面的就可以直接O(n)求解了。\sum_{i = 1} ^{n} \sum_{j = 1} ^{m} \tau(i)\tau(j) \tau(gcd(i, j))\\ \sum_{d = 1} ^{n} \tau(d) \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{m}{d}} \tau(id)\tau(id)[gcd(i, j) == 1]\\ \sum_{d = 1} ^{n} \tau(d) \sum_{k = 1} ^{\frac{n}{d}} \mu(k) \sum_{i = 1} ^{\frac{n}{dk}} \sum_{j = 1} ^{\frac{m}{dk}} \tau(idk)\tau(idk)\\ t = kd\\ \sum_{t = 1} ^{n} \sum_{i = 1} ^{\frac{n}{t}} \tau(it) \sum_{j = 1} ^{\frac{m}{t}} \tau(jt) \sum_{d \mid t} \tau(d) \mu(\frac{t}{d})\\ \sum_{d \mid t} \tau(d) \mu(\frac{t}{d}) = \tau * \mu,有\tau(n) = \sum_{d \mid n} = \sum_{d \mid n} 1 \times 1 = I * I\\ 所以有\tau * \mu = I * I * \mu = I * \epsilon = I = 1\\ 原式:\sum_{t = 1} ^{n} \sum_{i = 1} ^{\frac{n}{t}} \tau(it) \sum_{j = 1} ^{\frac{m}{t}} \tau(jt)\\ 所以只要预处理出后面的就可以直接O(n)求解了。 i=1∑nj=1∑mτ(i)τ(j)τ(gcd(i,j))d=1∑nτ(d)i=1∑dnj=1∑dmτ(id)τ(id)[gcd(i,j)==1]d=1∑nτ(d)k=1∑dnμ(k)i=1∑dknj=1∑dkmτ(idk)τ(idk)t=kdt=1∑ni=1∑tnτ(it)j=1∑tmτ(jt)d∣t∑τ(d)μ(dt)d∣t∑τ(d)μ(dt)=τ∗μ,有τ(n)=d∣n∑=d∣n∑1×1=I∗I所以有τ∗μ=I∗I∗μ=I∗ϵ=I=1原式:t=1∑ni=1∑tnτ(it)j=1∑tmτ(jt)所以只要预处理出后面的就可以直接O(n)求解了。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}#define uint unsigned int
uint seed;
inline uint getnext(){seed^=seed<<13;seed^=seed>>17;seed^=seed<<5;return seed;
}const int N = 2e6 + 10;int prime[N], cnt, n, m, mod;ll tau[N], f1[N], f2[N], f[N];bool st[N];void init() {tau[1] = 1;for(int i = 2; i < N; i++) {tau[i] = 1;if(!st[i]) prime[cnt++] = i;for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;}}for(int i = 0; i < cnt; i++) {for(int j = 1; 1ll * j * prime[i] < N; j++) {tau[j * prime[i]] = (tau[j * prime[i]] + tau[j]) % mod;}}
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);n = read(), m = read(), mod = read();init();if(n > m) swap(n, m);for(int i = 1; i <= m; i++) {if(i <= n) f1[i] = tau[i];f2[i] = tau[i];}for(int i = 0; i < cnt; i++) {for(int j = m / prime[i]; j >= 1; j--) {f2[j] = (f2[j] + f2[j * prime[i]]) % mod;}}for(int i = 0; i < cnt; i++) {for(int j = n / prime[i]; j >= 1; j--) {f1[j] = (f1[j] + f1[j * prime[i]]) % mod;}}ll ans = 0;for(int i = 1; i <= n; i++) {ans = (ans + 1ll * f1[i] * f2[i] % mod) % mod;}printf("%lld\n", ans);return 0;
}