多项式对数函数|指数函数(多项式)

多项式对数函数|指数函数

这个思路就是先求导然后再积分,这样就可以得到一个式子,对于多项式对数函数,我们就可以直接求解了,然后对于多项式指数函数还需要使用分治fft。

多项式对数:

#include<bits/stdc++.h>
#define LL long long
using namespace std;
inline int read()
{char x='\0';int fh=1,sum=0;for(x=getchar();x<'0'||x>'9';x=getchar())if(x=='-')fh=-1;for(;x>='0'&&x<='9';x=getchar())sum=sum*10+x-'0';return fh*sum;
}
const int N=400009;
const int mod=998244353;
int n,m;
inline int ksm(int a,int b)
{int sum=1;while(b){if(b&1)sum=1LL*sum*a%mod;b>>=1;a=1LL*a*a%mod;}return sum;
}
int F[N],G[N],rev[N],l,tt;
inline void getl(int len)
{for(l=1,tt=0;l<=len;l<<=1)tt++;for(int i=0;i<l;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(tt-1));
}
inline void NTT(int *P,int op)
{for(int i=0;i<l;i++)if(i<rev[i])swap(P[i],P[rev[i]]);for(int i=1;i<l;i<<=1){int wn=ksm(3,(mod-1)/(i<<1));if(op<0)wn=ksm(wn,mod-2);for(int j=0,p=i<<1;j<l;j+=p){for(int k=0,w=1;k<i;k++,w=1ll*w*wn%mod){int x=P[j+k],y=1LL*P[j+i+k]*w%mod;P[j+k]=(x+y)%mod,P[j+i+k]=(x-y+mod)%mod;}			}}if(op<0)for(int i=0,u=ksm(l,mod-2);i<l;i++)P[i]=1LL*P[i]*u%mod;
}
int C[N],D[N];
inline void getinv(int *f,int *g,int n)
{if(n==1)return g[0]=ksm(f[0],mod-2),void();getinv(f,g,n>>1);getl(n);for(int i=0;i<n;i++) C[i]=f[i],D[i]=g[i];for(int i=n;i<l;i++) C[i]=D[i]=0;	NTT(C,1),NTT(D,1);for(int i=0;i<l;i++) C[i]=1LL*C[i]*D[i]%mod*D[i]%mod;	NTT(C,-1);for(int i=0;i<n;i++) g[i]=((2LL*g[i]%mod-C[i])%mod+mod)%mod;
}
void dao(int *A,int *B,int len)
{for(int i=1;i<len;i++)B[i-1]=1LL*i*A[i]%mod;B[len-1]=0;
}
void jifen(int *A,int *B,int len)
{for(int i=1;i<len;i++)B[i]=1LL*A[i-1]*ksm(i,mod-2)%mod;B[0]=0;
}
int A[N],B[N];
void getln(int *f,int *g,int n)
{dao(f,A,n);getinv(f,B,n);getl(n),NTT(A,1),NTT(B,1);for(int i=0;i<l;i++)A[i]=1LL*A[i]*B[i]%mod;NTT(A,-1);jifen(A,g,n);
}
int main()
{n=read();for(int i=0;i<n;i++)F[i]=read();for(m=1;m<=n;m<<=1); getln(F,G,m);for(int i=0;i<n;i++) printf("%d ",G[i]);return 0;
}

细节:

  1. 首先需要一个封装好的NTT,然后每次需要重新求解l和rev
  2. 对于中间数组需要用到ABCD4个,但是使用过程中不能直接清空,所以在每次使用的时候要将空余的位置设置为0,保证有效位置都是正确的
  3. 过程中直接传递指针,就可以递归求解了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P5221 Product(反演)

P5221 Product 推式子 ∏i1n∏j1nlcm(i,j)gcd(i,j)∏i1n∏j1nijgcd(i,j)2我们考虑上面∏i1n∏j1nij∏i1nin∏j1nj∏i1ninn!n!n∏i1nin最后得到n!2n再考虑下面化简∏i1n∏j1ngcd(i,j)2∏d1nd2∑i1nd∑j1nd[gcd(i,j)1]对∑i1nd∑j1nd[gcd(i,j)1]化简∑k1ndμ(k)(nkd)2整体化简后…

【学习笔记】Docker - 02. 在容器中运行软件(上)

2.1 控制容器: 构建一个网站监视器 需求: 客户想让你做一个网站, 这个网站需要被紧密的监视, 如果服务器宕机了, 那么它们的团队会收到相关的邮件. 这里用到了3个容器. 第一个运行NGINX; 第二个运行一个叫做mailer的程序. 这两个容器都是detached的. Detached 表示容器将在后台…

P4249 [WC2007]剪刀石头布(网络流/费用流)

P4249 [WC2007]剪刀石头布 在一个竞赛图上一些边的方向已经确定&#xff0c;但是还有一些边的方向没有确定&#xff0c;求解最多有多少三元环。 首先看到三元环个数&#xff0c;按照套路我们利用度数计算&#xff0c;然后考虑每一条边&#xff0c;每一条边的贡献就是使两个点…

算法学习之旅

问题&#xff1a;设计一个算法&#xff0c;计算出n阶乘中尾部零的个数 例如: 11! 39916800&#xff0c;因此应该返回 2 挑战&#xff1a;O(logN)的时间复杂度 想法1&#xff1a; 找出1–n中每个数字能够被5或者10整除的次数&#xff0c;加在一起就是答案。但是时间复杂度是…

P6810 「MCOI-02」Convex Hull 凸包

P6810 「MCOI-02」Convex Hull 凸包 思路 ∑i1n∑j1mτ(i)τ(j)τ(gcd(i,j))∑d1nτ(d)∑i1nd∑j1mdτ(id)τ(id)[gcd(i,j)1]∑d1nτ(d)∑k1ndμ(k)∑i1ndk∑j1mdkτ(idk)τ(idk)tkd∑t1n∑i1ntτ(it)∑j1mtτ(jt)∑d∣tτ(d)μ(td)∑d∣tτ(d)μ(td)τ∗μ,有τ(n)∑d∣n∑d∣…

P6295 有标号 DAG 计数(多项式指数函数对数函数/二项式反演/动态规划/生成函数)

P6295 有标号 DAG 计数 https://www.luogu.com.cn/problem/P6295 求解n个点的有标号弱联通DAG个数 首先根据exp的组合意义&#xff0c;我们考虑指数型生成函数&#xff0c;那么我们先求出不要求弱联通的个数&#xff0c;然后ln回去就是弱联通的DAG个数。 然后考虑进行dp&…

使用.Net Core CLI命令dotnet new创建自定义模板

文章起源来自一篇博客&#xff1a;使用 .NET CORE 创建 项目模板&#xff0c;模板项目&#xff0c;Template - DeepThought - 博客园之前使用Abp的时候就很认同Abp创建模板项目的方式。想不到.Net Core出了更赞的方式创建模板。之前写过一个系列文章&#xff0c;有不少对Abp框架…

lintcode 有效的括号序列

心血来潮&#xff0c;半夜做了一道Lintcode的题目&#xff0c;调试完睡觉&#xff0c;欢迎大家批评指正。 public boolean isValidParentheses(String s) {// Write your code hereStack stacknew Stack();if(s.length()0){return true;}else if(s.length()1){return false;}fo…

C++ 预处理命令

C 预处理命令 https://www.luogu.com.cn/blog/ofnoname/yu-chu-li-ming-ling#

P3312 [SDOI2014]数表(离线 + 树状数组前缀和优化)

P3312 [SDOI2014]数表 推式子 ∑i1n∑j1mσ(gcd(i,j))∑d1nσ(d)∑i1nd∑j1md[gcd(i,,j)1]∑d1nσ(d)∑d1ndμ(k)nkdmkdtkd∑t1nntmt∑d∣tσ(d)μ(td)\sum_{i 1}^{n} \sum_{j 1} ^{m} \sigma(gcd(i, j))\\ \sum_{d 1} ^{n} \sigma(d) \sum_{i 1} ^{\frac{n}{d}} \sum_{j …

2019 年 8 月编程语言排行榜,C#重回增长之路

至于火热的 Python&#xff0c;其占有率还是保持着一如既往的增长势头&#xff0c;由 7 月的 9.260% 上升到现在的 10.020%。C 的占有率则稍有下降&#xff0c;由 6.705% 下降到了 6.057%&#xff0c;C# 和 Visual Basic .NET 分别呈现出增长和下降的趋势。可能是本期榜单没什么…

[CQOI2015]选数(杜教筛)

[CQOI2015]选数 推式子 根据题意可写出式子&#xff1a; ∑a1LH∑a2LH⋯∑anLH[gcd(a1,a2…an)k]∑a1⌈Lk⌉⌊Hk⌋∑a2⌈Lk⌉⌊Hk⌋⋯∑an⌈Lk⌉⌊Hk⌋[gcd(a1,a2…an)k]∑k1⌊Hk⌋μ(k)(⌊Hkd⌋−⌈Lkd⌉1)n提前处理一下左右端点∑k1⌊Hk⌋μ(k)(⌊Hkd⌋−⌊L−1kd⌋)n\sum_…

asp.net core系列 71 Web架构分层指南

一.概述本章Web架构分层指南&#xff0c;参考了“Microsoft应用程序体系结构指南”&#xff08;该书是在2009年出版的&#xff0c;当时出版是为了帮助开发人员和架构师更快速&#xff0c;更低风险地使用Microsoft平台和.NET Framework设计和构建有效&#xff0c;高质量的应用程…

P4719 【模板】“动态 DP“动态树分治(矩阵/轻重链剖分/ddp)

P4719 【模板】“动态 DP”&动态树分治 求解树上最大权独立集&#xff0c;但是需要支持修改。 https://www.luogu.com.cn/problem/solution/P4719 首先我们可以得到一个非常简单的dp式子&#xff0c;然后现在考虑怎么支持修改&#xff0c;首先每一次修改只会影响到当前节…

java编程笔记

程序功能&#xff1a;java统计abacbacdadbc中的每个字母出现的次数&#xff0c;输出格式是&#xff1a;a(4)b(3)c(3)d(2) 分析&#xff1a;将大小写按照同一个字母处理&#xff0c;最后都输出小写。 思路&#xff1a; 1.将string转成字符串数组&#xff0c;便于处理 2.遍历…

HDU 6607 Easy Math Problem(杜教筛 + min_25 + 拉格朗日插值)

Easy Math Problem 推式子 ∑i1n∑j1ngcd(i,j)Klcm(i,j)[gcd(i,j)∈prime]∑i1n∑j1ngcd(i,j)K−1ij[gcd(i,j)∈prime]∑d∈primendK1∑i1nd∑j1ndij[gcd(i,j)1]对∑i1n∑j1nij[gcd(i,j)1]化简2(∑i1niiϕ(i)[i1]2)−1∑i1ni2ϕ(i)∑d∈primendK1∑i1ndi2ϕ(i)\sum_{i 1} ^{n…

C#高级语法之泛型、泛型约束,类型安全、逆变和协变(思想原理)

一、为什么使用泛型&#xff1f;泛型其实就是一个不确定的类型&#xff0c;可以用在类和方法上&#xff0c;泛型在声明期间没有明确的定义类型&#xff0c;编译完成之后会生成一个占位符&#xff0c;只有在调用者调用时&#xff0c;传入指定的类型&#xff0c;才会用确切的类型…

mysql-5.7.10-winx64 MySQL服务无法启动,服务没有报告任何错误的解决办法

总结报错原因&#xff1a; 在my.init文件下新增data目录&#xff08;datadir F:\mysqldata &#xff09; 最新解压版本的mysql 解压安装的时候报错 D:\mysql\mysql-5.7.10-winx64\bin>net start mysql MySQL 服务正在启动 …. MySQL 服务无法启动。 服务没有报告任何…

F - Sugoroku2(动态规划)

F - Sugoroku2 一个经典的概率期望dp的模型&#xff0c;现在要求从0移动到n&#xff0c;每次等概率移动1到m的距离&#xff0c;有k个点&#xff0c;一旦到达就移动回到0&#xff0c;一旦到达n或超过n游戏结束&#xff0c;求解步数期望。 那么我们dp的时候可以发现每一个值会有…

威佐夫博弈及其拓展

威佐夫博弈 普通威佐夫博弈&#xff1a; 两种操作&#xff1a;一、同时在两堆上取相同的个数。二、在某一堆上取任意个数。&#xff08;每次取不为0&#xff09; a[n]nα,b[n]a[n]n,α152a[n] n \alpha, b[n] a[n] n,\alpha \frac{1 \sqrt5}{2}a[n]nα,b[n]a[n]n,α215​…