P5221 Product
推式子
∏i=1n∏j=1nlcm(i,j)gcd(i,j)∏i=1n∏j=1nijgcd(i,j)2我们考虑上面∏i=1n∏j=1nij∏i=1nin∏j=1nj∏i=1ninn!n!n∏i=1nin最后得到n!2n再考虑下面化简∏i=1n∏j=1ngcd(i,j)2∏d=1nd2∑i=1nd∑j=1nd[gcd(i,j)=1]对∑i=1nd∑j=1nd[gcd(i,j)==1]化简∑k=1ndμ(k)(nkd)2整体化简后n!2n∏d=1nd2∑k=1ndμ(k)(nkd)2\prod_{i = 1} ^{n} \prod_{j= 1} ^{n}\frac{lcm(i, j)}{gcd(i, j)}\\ \prod_{i = 1} ^{n} \prod_{j = 1} ^{n} \frac{ij}{gcd(i, j) ^ 2}\\ 我们考虑上面\\ \prod_{i = 1} ^{n} \prod_{j = 1} ^{n} ij\\ \prod_{i = 1} ^{n} i ^ n \prod_{j = 1} ^{n}j\\ \prod_{i = 1} ^{n} i ^ n n!\\ n! ^n \prod_{i = 1} ^{n} i ^ n\\ 最后得到n! ^{2n}\\ 再考虑下面化简\\ \prod_{i = 1} ^{n} \prod_{j = 1} ^{n}gcd(i, j) ^2\\ \prod_{d = 1} ^{n} d ^ {2\sum\limits_{i = 1} ^{\frac{n}{d}}\sum\limits_{j = 1} ^{\frac{n}{d}}[gcd(i, j) = 1]}\\ 对\sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}} [gcd(i, j) == 1]化简\\ \sum_{k = 1} ^{\frac{n}{d}} \mu(k) \left(\frac{n}{kd}\right) ^ 2\\ 整体化简后\frac{n!^{2n}}{\prod_{d = 1} ^{n} d ^{2\sum\limits_{k = 1} ^{\frac{n}{d}} \mu(k) \left(\frac{n}{kd}\right) ^ 2}} i=1∏nj=1∏ngcd(i,j)lcm(i,j)i=1∏nj=1∏ngcd(i,j)2ij我们考虑上面i=1∏nj=1∏niji=1∏ninj=1∏nji=1∏ninn!n!ni=1∏nin最后得到n!2n再考虑下面化简i=1∏nj=1∏ngcd(i,j)2d=1∏nd2i=1∑dnj=1∑dn[gcd(i,j)=1]对i=1∑dnj=1∑dn[gcd(i,j)==1]化简k=1∑dnμ(k)(kdn)2整体化简后∏d=1nd2k=1∑dnμ(k)(kdn)2n!2n
代码
开c++17,不加O2O_2O2能过,卡内存,,,
#include <bits/stdc++.h>using namespace std;typedef long long ll;const int mod = 104857601, Mod = mod - 1, N = 1e6 + 10;int mu[N], prime[N], cnt, n;bool st[N];ll quick_pow(ll a, int n) {ll ans = 1;while(n) {if(n & 1) ans = ans * a % mod;a = a * a % mod;n >>= 1;}return ans;
}ll inv(ll x) {return quick_pow(x, mod - 2);
}void init() {mu[1] = 1;for(int i = 2; i < N; i++) {if(!st[i]) {prime[cnt++] = i;mu[i] = -1;}for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {st[i * prime[j]] = 1;if(i % prime[j] == 0) break;mu[i * prime[j]] = -mu[i];}}for(int i = 1; i < N; i++) {mu[i] += mu[i - 1];}
}ll calc1(ll l, ll r) {ll ans = 1;for(int i = l; i <= r; i++) {ans = ans * i % mod;}return ans;
}ll calc2(ll n) {ll ans = 0;for(ll l = 1, r; l <= n; l = r + 1) {r = n / (n / l);ans = (ans + 1ll *(mu[r] - mu[l - 1]) * (n / l) % Mod * (n / l) % Mod) % Mod;}return (ans % Mod + Mod) % Mod;
}int main() {init();scanf("%d", &n);ll a = 1, b = 1;for(int i = 1; i <= n; i++) a = a * i % mod;a = quick_pow(a, (2 * n) % Mod);for(int l = 1, r; l <= n; l = r + 1) {r = n / (n / l);b = b * quick_pow(calc1(l, r), 2ll * calc2(n / l) % Mod) % mod;}printf("%lld\n", 1ll * a * inv(b) % mod);return 0;
}