题目描述
请判断一个链表是否为回文链表。
示例 1:
输入: 1->2
输出: false
示例 2:
输入: 1->2->2->1
输出: true
进阶:
你能否用 O(n) 时间复杂度和 O(1) 空间复杂度解决此题?
解题
思路1:直接利用List的顺序存储性,解题
/*** 思路1:数组存储法* 时间复杂度O(n),空间复杂度O(n)* @param head* @return*/public boolean isPalindrome1(ListNode head) {List<Integer> list = new ArrayList<Integer>();while(head!=null) {list.add(head.val);head=head.next;}int size = list.size();for(int i=0;i<size/2;i++) {if(list.get(i).intValue() != list.get(size-1-i).intValue() ) {return false;}}return true;}
**思路2:**利用栈的入栈、出栈,改变集合顺序原理
public boolean isPalindrome(ListNode head) {Stack<Integer> s = new Stack<>();ListNode cur = head;//将整个链表入栈,之后出栈的顺序其实就是链表的逆序while(cur != null){s.push(cur.val);cur = cur.next;}cur = head;while(!s.isEmpty()){if(s.pop() != cur.val){return false;}cur = cur.next;}return true;}
思路3
/*** 思路3:* 1.快慢指针找到中间节点* 2.反转后半段链表* 3.顺序比较链表前后半段,都相等则为回文* 时间复杂度O(n),空间复杂度O(1)* @param head* @return*/public boolean isPalindrome(ListNode head) {if(head == null) {return true;}ListNode slow = head, fast=head, mid=null;while(fast!=null && fast.next!=null) {slow = slow.next;fast = fast.next.next;}mid = slow;ListNode cur = mid, next = mid.next, nNext=null;//链表从中间截断cur.next = null;while (next != null) {nNext = next.next;next.next = cur;cur = next;next = nNext;}while(cur != null) {if(head.val != cur.val) {return false;}head = head.next;cur = cur.next;}return true;}