生成函数
可表示为F(x)=∑nankn(x)F(x) = \sum\limits_{n} a_n k_n(x)F(x)=n∑ankn(x),对于不同类型的生成函数,有不同的核函数kn(x)k_n(x)kn(x)。
普通生成函数:kn(x)=xnk_n(x) = x ^ nkn(x)=xn。
指数生成函数:kn(x)=xnn!k_n(x) = \frac{x ^ n}{n !}kn(x)=n!xn。
迪利克雷生成函数:kn(x)=1nxk_n(x) = \frac{1}{n ^ x}kn(x)=nx1。
普通生成函数
封闭形式
在运用生成函数的过程中,我们不会一直使用形式幂级数的形式,而会适时地转化为封闭形式以更好地化简。
对于<1,1,1,⋯><1, 1, 1, \dots><1,1,1,⋯>的普通生成函数F(x)=∑0≤nxnF(x) = \sum\limits_{0 \leq n} x ^ nF(x)=0≤n∑xn,F(x)x+1=F(x)F(x)x + 1 = F(x)F(x)x+1=F(x),F(x)=11−xF(x) = \frac{1}{1 - x}F(x)=1−x1
一些函数的封闭形式化简
<1,p,p2,p3,p4,⋯><1, p, p ^ 2, p ^ 3, p ^ 4, \dots><1,p,p2,p3,p4,⋯>
F(x)=∑n≥0pnxn,F(x)px+x=F(x),F(x)=x1−pxF(x) = \sum\limits_{n \geq 0} p ^ n x ^ n, F(x) px + x = F(x), F(x) = \frac{x}{1 - px}F(x)=n≥0∑pnxn,F(x)px+x=F(x),F(x)=1−pxx
<0,1,1,1,1,⋯><0, 1, 1, 1, 1, \dots><0,1,1,1,1,⋯>
F(x)=∑n≥1xn,xF(x)+x=F(x),F(x)=x1−xF(x) = \sum\limits_{n \geq 1} x ^ n,xF(x) + x = F(x), F(x) = \frac{x}{1 - x}F(x)=n≥1∑xn,xF(x)+x=F(x),F(x)=1−xx
<1,0,1,0,1,⋯><1, 0, 1, 0, 1, \dots><1,0,1,0,1,⋯>
F(x)=∑n≥0x2n,F(x)x2+1=F(x),F(x)=11−x2F(x) = \sum\limits_{n \geq 0} x ^ {2n}, F(x)x ^ 2 + 1 = F(x), F(x) = \frac{1}{1 - x ^ 2}F(x)=n≥0∑x2n,F(x)x2+1=F(x),F(x)=1−x21
<1,2,3,4,5,⋯><1, 2, 3, 4, 5, \dots><1,2,3,4,5,⋯>
F(x)=∑n≥0(n+1)xn,F(x)−xF(x)=∑n≥0xn=11−x,F(x)=1(1−x)2F(x) = \sum\limits_{n \geq 0} (n + 1) x ^ n, F(x) - xF(x) = \sum\limits_{n \geq 0} x ^ n = \frac{1}{1 - x}, F(x) = \frac{1}{(1 - x) ^ 2}F(x)=n≥0∑(n+1)xn,F(x)−xF(x)=n≥0∑xn=1−x1,F(x)=(1−x)21
an=(nm)(m是常数,n≥0)a_n = (_n ^ m)(m是常数,n \geq 0)an=(nm)(m是常数,n≥0)
F(x)=∑n≥0Cmnxn,二项式定理有F(x)=(1+x)mF(x) = \sum\limits_{n \geq 0} C_m ^n x ^ n, 二项式定理有F(x) = (1 + x) ^ mF(x)=n≥0∑Cmnxn,二项式定理有F(x)=(1+x)m
an=(nn+m)(m是常数,n≥0)a_n = (_n ^{n + m})(m是常数,n \geq 0)an=(nn+m)(m是常数,n≥0)
F(x)=∑n≥0Cn+mnxn,F(x)=1(1−x)m+1F(x) = \sum\limits_{n \geq 0} C_{n + m} ^{n} x ^ n, F(x) = \frac{1}{(1 - x) ^{m + 1}}F(x)=n≥0∑Cn+mnxn,F(x)=(1−x)m+11
斐波那契数列生成函数
F(x)=a0+a1x+a2x2+…xF(x)=a0x+a1x2+a2x3+…x2F(x)=a0x2+a1x3+a2x4+…F(x)=xF(x)+x2F(x)+a0F(x)=11−x−x2求解1−x−x2=(1−ax)(1−bx),得到a=1+52,b=1−52F(x)=11−x−x2=A1−ax+B1−bx解得A=1na,B=−15b有F(x)=a511−ax−b5B1−bx由∑n≥0Cn+mnxn=1(1−x)m+1可解得斐波那契生成函数的第n项系数,an=a5an−b5bnan=15((1+52)n+1−(1−52)n+1)F(x) = a_0 + a_1x + a_2 x ^ 2 + \dots\\ xF(x) = a_0x + a_1x ^ 2 + a_2 x ^ 3 + \dots\\ x ^ 2 F(x) = a_0 x ^ 2 + a_1 x ^ 3 + a_2 x ^ 4 + \dots\\ F(x) = xF(x) + x ^ 2 F(x) + a_0\\ F(x) = \frac{1}{1 - x - x ^ 2}\\ 求解1 - x - x ^ 2 = (1 - ax)(1 - bx),得到a = \frac{1 + \sqrt 5}{2}, b = \frac{1 - \sqrt 5}{2}\\ F(x) = \frac{1}{1 - x - x ^ 2} = \frac{A}{1 - ax} + \frac{B}{1 - bx}\\ 解得A = \frac{1}{\sqrt n} a, B = -\frac{1}{\sqrt 5}b\\ 有F(x) = \frac{a}{\sqrt 5} \frac{1}{1 - ax} - \frac{b}{\sqrt 5} \frac{B}{1 - bx}\\ 由\sum\limits_{n \geq 0} C_{n + m} ^{n} x ^ n = \frac{1}{(1 - x) ^{m + 1}}\\ 可解得斐波那契生成函数的第n项系数,a_n = \frac{a}{\sqrt 5} a ^ n - \frac{b}{\sqrt 5} b ^ n\\ a_n = \frac{1}{\sqrt 5}((\frac{1 + \sqrt 5}{2}) ^ {n + 1} - (\frac{1 - \sqrt 5}{2}) ^{n + 1})\\ F(x)=a0+a1x+a2x2+…xF(x)=a0x+a1x2+a2x3+…x2F(x)=a0x2+a1x3+a2x4+…F(x)=xF(x)+x2F(x)+a0F(x)=1−x−x21求解1−x−x2=(1−ax)(1−bx),得到a=21+5,b=21−5F(x)=1−x−x21=1−axA+1−bxB解得A=n1a,B=−51b有F(x)=5a1−ax1−5b1−bxB由n≥0∑Cn+mnxn=(1−x)m+11可解得斐波那契生成函数的第n项系数,an=5aan−5bbnan=51((21+5)n+1−(21−5)n+1)
一道生成函数模板题
由题意可列出式子
∑n≥0x6n=11−x6∑n≥09xn=x10−1x−1∑n≥05xn=x6−1x−1∑n≥0x4n=11−x4∑n≥07=x8−1x−1∑n≥0x2n=11−x2∑n≥01xn=x2−1x−1∑n≥0x8n=11−x8∑n≥0x10n=11−x10∑n≥03=x4−1x−1全部乘起来得到1(1−x)5得到第n项为Cn+4n=Cn+44\sum_{n \geq 0} x ^ {6n} = \frac{1}{1 - x ^ 6}\\ \sum_{n \geq 0} ^{9} x ^ n = \frac{x ^ {10} - 1}{x - 1}\\ \sum_{n \geq 0} ^{5} x ^ n = \frac{x ^ 6 - 1}{x - 1}\\ \sum_{n \geq 0} x ^{4n} = \frac{1}{1 - x ^ 4}\\ \sum_{n \geq 0} ^{7} = \frac{x ^ 8 - 1}{x - 1}\\ \sum_{n \geq 0} x ^{2n} = \frac{1}{1 - x ^ 2}\\ \sum_{n \geq 0} ^{1} x ^ n = \frac{x ^ 2 - 1}{x - 1}\\ \sum_{n \geq 0} x ^{8n} = \frac{1}{1 - x ^ 8}\\ \sum_{n \geq 0} x ^{10 n} = \frac{1}{1 - x ^{10}}\\ \sum_{n \geq 0} ^{3} = \frac{x ^ 4 - 1}{x - 1}\\ 全部乘起来得到\frac{1}{(1 - x) ^ 5}\\ 得到第n项为C_{n + 4} ^{n} = C_{n + 4} ^{4}\\ n≥0∑x6n=1−x61n≥0∑9xn=x−1x10−1n≥0∑5xn=x−1x6−1n≥0∑x4n=1−x41n≥0∑7=x−1x8−1n≥0∑x2n=1−x21n≥0∑1xn=x−1x2−1n≥0∑x8n=1−x81n≥0∑x10n=1−x101n≥0∑3=x−1x4−1全部乘起来得到(1−x)51得到第n项为Cn+4n=Cn+44
#3027. [Ceoi2004]Sweet
题目就是要我们求:
F(x)=∏i=1n1−xmi+11−xF(x)(1−x)n=∏i=1n1−xmi+1F(x) = \prod_{i = 1} ^{n} \frac{1 - x ^{m_i + 1}}{1 - x}\\ F(x) (1 - x) ^ n = \prod_{i = 1} ^{n} 1 - x ^{m_i + 1}\\ F(x)=i=1∏n1−x1−xmi+1F(x)(1−x)n=i=1∏n1−xmi+1
只需要暴力展开左右两边,枚举系数即可求得,