爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

解法:
参考:程序员小灰 https://mp.weixin.qq.com/s/3h9iqU4rdH3EIy5m6AzXsg
其实爬楼梯是最简单的动态规划问题,因为只有单一变量。此问题可以转为斐波那契数列来解,也即是:
状态转移方程:F(n) = F(n-1) + F(n-2)
最优子结构:F(n-1) 和 F(n-2)
边界:F(1) =1, F(2)=2

由此,分别得到以下解法以及优化解法

/*** 基础版递归解法* 由此,可以得到一个二叉树* 二叉树的节点数即是需要计算的次数* 时间复杂度O(n`2)* @param n* @return*/public int climbStairs(int n) {if(n<1) {return 0;}else if (n==1) {return 1;}else if (n==2) {return 2;}return climbStairs(n-1)+climbStairs(n-2);}

可以发现,很多值是重复计算了。比如n==5时,n=3就重复计算了两次,是浪费的。其实只需要计算O(n)次。所以,可以使用缓存,缓存之前的计算结果。降低时间复杂度。
代码如下:

public int climbStairs(int n) {if(n<1) {return 0;}else if (n==1) {return 1;}else if (n==2) {return 2;}Map<Integer, Integer> map = new HashMap<Integer, Integer>();map.put(1, 1);map.put(2, 2);return climbStairs(n, map);}public int climbStairs(int n, Map<Integer, Integer> map) {if(map.containsKey(n)) {return map.get(n);}else {int value = climbStairs(n-1, map)+climbStairs(n-2, map);map.put(n, value);return value;}}

目前空间复杂度为O(n),从这方面入手,继续优化。目前的思路是为计算F(n),依次计算F(n-1),F(n-1)…2,1 。将沙漏倒过来思考,也就是
已知:F(1),F(2),那可以算出来F(3)
已知:F(2),F(3),那可以算出来F(4)
所以,想要计算n,其实只需要记录n-1,n-2的step,就可以实现了。空间复杂度从O(n)到O(1)
代码如下:

/*** 时间复杂度O(n)* 空间复杂度O(1)* 最优解* @param n* @return*/
public int climbStairs(int n) {if(n<1) {return 0;}else if (n==1) {return 1;}else if (n==2) {return 2;}int n_1=2,n_2=1;int temp =0;for(int i=3;i<=n;i++) {temp = n_1 + n_2;n_2 = n_1;n_1 = temp;}return temp;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313960.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

netcore 中的动态代理与RPC实现(微服务专题)

一、关于RPC的调用1. 调用者&#xff08;客户端Client&#xff09;以本地调用的方式发起调用&#xff1b;  2. Client stub&#xff08;客户端存根&#xff09;收到调用后&#xff0c;负责将被调用的方法名、参数等打包编码成特定格式的能进行网络传输的消息体&#xff1b; …

多项式除法,多项式取模

多项式除法 给定一个nnn次多项式F(x)F(x)F(x)和mmm次多项式G(x)G(x)G(x)&#xff0c;要求R(x),Q(x)R(x), Q(x)R(x),Q(x)&#xff0c;满足F(x)R(x)G(x)Q(x)F(x) R(x)G(x) Q(x)F(x)R(x)G(x)Q(x)。 R(x)R(x)R(x)是一个n−mn - mn−m阶多项式&#xff0c;Q(x)Q(x)Q(x)是一个小于…

[翻译] .NET Core 3.0 Preview 9 发布

原文: Announcing .NET Core 3.0 Preview 9今天&#xff0c;我们宣布推出 .NET Core 3.0 Preview 9。就像 Preview 8 一样&#xff0c;我们专注于打磨 .NET Core 3.0 的最终版本&#xff0c;而不是添加新功能。如果这些最终版本看起来不像早期预览版那么令人兴奋&#xff0c;我…

南昌网络赛E Interesting Series

Interesting Series 可求得通项Fnan−1a−1F_n \frac{a ^ n - 1}{a - 1}Fn​a−1an−1​&#xff0c;一个等比数列的前nnn项和&#xff0c;value(s)Fsum(s)value(s) F_{sum(s)}value(s)Fsum(s)​。 题目要我们求的是Answer(K)∑s∈subsetofSand∣s∣Kvalue(s)Answer(K) \s…

谈谈“学习”这件事儿

曾经有童鞋在我博客留言&#xff1a;楼主你是如何学习的&#xff0c;肿么那么牛逼&#xff08;注&#xff1a;真不牛逼&#xff0c;只不过我讲的你刚好不知道&#xff0c;在你心中就形成了好牛逼的样子&#xff09;曾经也有童鞋加我好友&#xff0c;开头第一句则是&#xff1a;…

牛客练习赛50 F tokitsukaze and Another Protoss and Zerg

tokitsukaze and Another Protoss and Zerg 考虑生成函数&#xff0c;每一场的生成函数为∑j1b[i]Cb[i]j∑j1a[i]Ca[i]jxj\sum\limits_{j 1} ^{b[i]}C_{b[i]} ^ j \sum\limits_{j 1} ^{a[i]}C_{a[i]} ^{j} x ^ jj1∑b[i]​Cb[i]j​j1∑a[i]​Ca[i]j​xj&#xff0c; 进一步…

持续集成之应用k8s自动部署

持续集成之应用k8s自动部署Intro上次我们提到了docker容器化及自动化部署[1]&#xff0c;这仅仅适合个人项目或者开发环境部署&#xff0c;如果要部署到生产环境&#xff0c;必然就需要考虑很多因素&#xff0c;比如访问量大了如何调整部署&#xff0c;如何更好的应对大并发的情…

Fizz Buzz

题目描述 写一个程序&#xff0c;输出从 1 到 n 数字的字符串表示。 如果 n 是3的倍数&#xff0c;输出“Fizz”&#xff1b; 如果 n 是5的倍数&#xff0c;输出“Buzz”&#xff1b; 3.如果 n 同时是3和5的倍数&#xff0c;输出 “FizzBuzz”。 示例&#xff1a; n 15,返…

多项式全家桶(半)

快速傅里叶变换(FFT) 多项式表示 系数表示法&#xff1a; 一个nnn次多项式可以用n1n 1n1个系数表示出来&#xff1a;f(x)a0a1xa2x2⋯an−1xn−1anxnf(x) a_0 a_1 x a_2 x ^ 2 \dots a_{n - 1} x ^{n- 1} a_n x ^nf(x)a0​a1​xa2​x2⋯an−1​xn−1an​xn。 点值表示…

持续集成之应用容器化及自动化部署

通过 Azure Pipelines 实现持续集成之docker容器化及自动化部署IntroAzure DevOps Pipeline 现在对于公开的项目完全免费&#xff0c;这对于开源项目来讲无疑是个巨大的好消息&#xff0c;在 Github 的 Marketplace 里有个 Azure Pipeline&#xff0c;就是微软的 Azure DevOps …

最小栈

题目描述 设计一个支持 push&#xff0c;pop&#xff0c;top 操作&#xff0c;并能在常数时间内检索到最小元素的栈。 push(x) – 将元素 x 推入栈中。 pop() – 删除栈顶的元素。 top() – 获取栈顶元素。 getMin() – 检索栈中的最小元素。 示例: MinStack minStack new …

持续集成之 Nuget 进阶

持续集成之 Nuget 进阶Intro之前介绍了一篇基于 Azure pipeline 的 nuget 包的持续集成配置&#xff0c;但是比较粗糙&#xff0c;这里介绍一下结合 Cake 实现更优雅的 nuget 包发布流程。实现目标&#xff1a;分支(除master/preview)有代码 push 或者 pr 时 自动 buildpreview…

#3771. Triple(生成函数 + 容斥)

#3771. Triple 考虑只有一个损失时&#xff0c;损失值的生成函数为A(x)A(x)A(x)。 如果不考虑无序方案&#xff0c;有两个损失的生成函数为B(x)A(x)A(x)B(x) A(x)A(x)B(x)A(x)A(x)&#xff0c;同理有三个的时候C(x)A(x)A(x)A(x)C(x) A(x)A(x)A(x)C(x)A(x)A(x)A(x)。 考虑如…

计数质数

题目描述 统计所有小于非负整数 n 的质数的数量。 示例: 输入: 10 输出: 4 解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。解法 思路1&#xff1a;暴力法 /***暴力法* 时间复杂度O(n2)* 空间复杂度(O(1))* param n* return*/ public int countPrimes(int n) {if(n&…

做“是非题”的正确姿势

这里是Z哥的个人公众号每周五11&#xff1a;45 按时送达有时也会有感而发&#xff0c;来加个餐&#xff5e;我的第「107」篇原创敬上大家好&#xff0c;我是Z哥。这两天中国男篮的事&#xff0c;让我有感而发。不知道你有没有留意到&#xff0c;我们身边总有类似下面这样的事情…

3的幂

题目描述 给定一个整数&#xff0c;写一个函数来判断它是否是 3 的幂次方。 示例 1: 输入: 27 输出: true示例 2: 输入: 0 输出: false示例 3: 输入: 9 输出: true示例 4: 输入: 45 输出: false进阶&#xff1a; 你能不使用循环或者递归来完成本题吗&#xff1f; 解法1&a…

E. The Child and Binary Tree(生成函数 + 多项式)

E. The Child and Binary Tree 不难写出一个递推式fn∑i1ngi∑j0n−ifjfn−i−jf_n \sum\limits_{i 1} ^{n}g_i \sum\limits_{j 0} ^{n - i}f_jf_{n - i - j}fn​i1∑n​gi​j0∑n−i​fj​fn−i−j​&#xff0c;其中gig_igi​表示ccc中有没有iii这个数。 设F(x)F(x)F(x)…

依赖倒置原则(DIP)、控制反转(IoC)、依赖注入(DI)(C#)

象的控制权交由配置文件控制&#xff0c;然后根据配置文件中的信息&#xff08;程序集类型&#xff09;&#xff0c;通过反射来获取对象&#xff0c;而不是直接new对象&#xff0c;这也是控制反转的一种体现。IoC容器会连接程序中的所有模块&#xff0c;模块将所需对象的控制权…

汉明距离

题目描述 两个整数之间的汉明距离指的是这两个数字对应二进制位不同的位置的数目。 给出两个整数 x 和 y&#xff0c;计算它们之间的汉明距离。 注意&#xff1a; 0 ≤ x, y < 231. 示例: 输入: x 1, y 4输出: 2解释: 1 (0 0 0 1) 4 (0 1 0 0)↑ ↑上面的箭头指…

P3978 [TJOI2015]概率论(生成函数)

P3978 [TJOI2015]概率论 设fif_ifi​表示节点数为iii的二叉树有多少&#xff0c;gig_igi​表示节点数为iii的二叉树有多少叶子节点。 fn∑i0n−1fifn−1−if_n \sum\limits_{i 0} ^{n - 1}f_if_{n - 1 - i}fn​i0∑n−1​fi​fn−1−i​&#xff0c;f01f_0 1f0​1。 对于g…