Python和R概率统计算法建模评估气象和运动

🎯要点

  1. 概率统计数学:🎯Python和R计算和算法实现
  2. 气象学:
    1. 计算和可视化:🎯全球陆地-海洋平均年平均表面温度:🖊直方图温度异常,🖊显示分位数-分位数,🖊绘制线性趋势线,🖊绘制温度空间图,🖊温度空间图的全景图,🖊一维空间一维时间数据和霍夫莫勒图,🖊三维空间和一维时间文件及其地图绘制。🖊ChatGPT生成全球温度。
    2. 概率统计计算和绘制:🎯气象变量:🖊日降水量,🖊干旱期的概率分布函数和累计分布函数,二项分布和正态分布、🖊气候数据集估计平均值、方差、偏度和峰度,🖊降水量泊松分布。🎯估算:🖊给定日期地面气温异常平均值和置信区间,🖊计算气温异常假设检验,🖊计算气温统计学有效样本大小,🖊计算给定期间气温统计学上明显差异,🖊计算平均晴天、部分多云、多云天数,🖊将月降雨量数据拟合到伽玛分布,🖊使用累积分布的柯尔莫哥洛夫-斯米尔诺夫检验检查观测值和预期值拟合度,🖊对Kendall tau 检验既存同类数据关系,🖊曼-肯德尔趋势检验。
    3. 回归建模:🎯温度:🖊下降率和近似线性建模,单变量线性回归的假设和公式推导,斜率和相关性关系,置信区间预测,🖊鉴于地理坐标的温度下降率多线性回归建模,🖊全球温度的多线性回归非线性拟合。
    4. 矩阵数据:🎯数学线性计算:🖊奇异值分解海平面压力,🖊计算和可视化温度异常的时空因子的样本协方差矩阵,🖊计算和绘制赤道纬向带上温度异常的协方差矩阵特征值的曲线图,🖊德宾-沃森独立性测试样本,🖊指定特征值和标准误差条的碎石图。
    5. 时间序列:🎯二氧化碳数据:🖊基林曲线,🖊误差趋势和季节分解时间序列数据,🖊基林曲线的预测和观测数据的拟合,🖊最低气温观测数据及其趋势、季节周期和随机残差,🖊模拟自回归序列,🖊频谱分析,傅里叶变换。
    6. 机器学习:🎯气温和风:🖊每日天气数据的 K 均值聚类,散列图显示温度和风向关系,🖊聚类凸包数据分析,🖊随机森林回归城市每日臭氧层数据。
    7. 🎯气候和干旱指数:气候指数算法代码实现
  3. 运动学:
    1. 🎯可靠与不可靠性数据分析:🖊过滤、🖊汇总、🖊绘制,🖊专业运动员级成功可靠性。

    2. 🎯一般和多线性回归建模:🖊使用探索性数据分析绘制数据、🖊建模,拟合模型,运行模型获得汇总结果、🖊使用统计模型多线性建模和拟合模型,汇总模型结果。

    3. 🎯广义线性模型:🖊建模,绘制逻辑曲线、🖊从模型获取运动超出预期的完成百分比、🖊计算超出预期的完成百分比 vs 完成百分比的可靠性。

    4. 🎯泊松回归和体彩投注:🖊计算泊松概率分布,直方图观察比赛变化,🖊建模,从收支平衡计算投注方式,🖊计算泊松回归系数对模型结果的影响。

    5. 🎯主成分分析和聚类:🖊散列图分析运动员身体特征及运动特点、🖊降维(主成分分析)分析运动员成绩,🖊聚类算法:K均值法计算运动员和比赛结果。

    6. 机器学习:🎯视频计算人体运动学和动力学,大语言模型推理运动模式。

🍇Python分析网格降水量

import glob
import matplotlib.pyplot as plt
import urllib.request
import xarray as xr
for yr in range(2011,2015): url = f'https://downloads.precip.V1.0.{yr}.nc'savename = url.split('/')[-1]urllib.request.urlretrieve(url,savename)

让我们从简单开始:打开两年的数据并将它们连接到一个文件:

ds2011 = xr.open_dataset('precip.V1.0.2011.nc')
ds2012 = xr.open_dataset('precip.V1.0.2012.nc')
ds2011_2012 = xr.concat([ds2011,ds2012], dim='time')

现在,让我们尝试类似的操作,但通过更有效的方式(特别是文件数量超过两个):

ds2011_2014 = xr.open_mfdataset('precip.V1.0.*.nc', concat_dim='time', combine='nested')

现在让我们关注 2012 年并提取每月降水量总和并绘制其中一个月的简单绘图:

上面的图很简单,质量不高。现在,我们将为所有 12 个月制定一个更加个性化的情节,如下所示:

import calendar 
landmask = ds2012.precip.sum(dim='time')>0
fig = plt.figure(figsize=[12,8], facecolor='w')
plt.subplots_adjust(bottom=0.15, top=0.96, left=0.04, right=0.99, wspace=0.2, hspace=0.27) 
nrows = 3
ncols = 4
for i in range(1, 13):plt.subplot(nrows, ncols, i)dataplot = ds2012_mon.precip[i-1, :, :].where(landmask) p = plt.pcolormesh(ds2012_mon.lon, ds2012_mon.lat, dataplot,vmax = 400, vmin = 0, cmap = 'nipy_spectral_r',) plt.xlim([233,295])plt.ylim([25,50])plt.title(calendar.month_name[dataplot.month.values], fontsize = 13, fontweight = 'bold', color = 'b')plt.xticks(fontsize = 11)plt.yticks(fontsize = 11)if i % ncols == 1: plt.ylabel('Latitude', fontsize = 11, fontweight = 'bold')if i > ncols*(nrows-1): plt.xlabel('Longitude', fontsize = 11, fontweight = 'bold')cax = fig.add_axes([0.25, 0.06, 0.5, 0.018])
cb = plt.colorbar(cax=cax, orientation='horizontal', extend = 'max',)
cb.ax.tick_params(labelsize=11)
cb.set_label(label='Precipitation (mm)', color = 'k', size=14)plt.savefig('Fig_prec_mon_2012.png', format = 'png', dpi = 300)

现在假设我们想要提取特定边界的数据并查看该感兴趣区域内的平均条件。为简单起见,我们可以考虑一个矩形框。对于本例,让我们看一个几乎与此地类似的矩形框

top = 40
bottom = 37
left = 258
right = 265.4
ds_sel = ds2011_2014.isel(lon=(ds2011_2014.lon >= left) & (ds2011_2014.lon <= right),lat=(ds2011_2014.lat >= bottom) & (ds2011_2014.lat <= top),)
ds_sel_avg = ds_sel.mean(dim=['lat','lon'])

现在让我们绘制所选区域每年的累计日降水量。为了让事情变得更简单,让我们从记录中的所有闰年中删除 2 月 29 日。

ds_sel_avg_noleap = ds_sel_avg.sel(time=~((ds_sel_avg.time.dt.month == 2) & (ds_sel_avg.time.dt.day == 29)))

结果如下:

ds_sel_avg_noleap

参阅一:计算思维

参阅二:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/823160.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Socket实现局域网内聊天室

需要提前了解的Socket知识点&#xff1a; Client端输入的IP都是Server所在电脑的IPServer最好设置0.0.0.0这样无论迁移到哪个电脑上&#xff0c;都是那台电脑的IPClient和Server必须在同一个局域网之下&#xff0c;否则不能通信&#xff1b;如果要实现跨局域网通信&#xff0c…

幻兽帕鲁老板公开发声:腾讯正在制作幻兽帕鲁克隆版

昨天&#xff0c;Pocketpair的老板出来指责中国游戏公司抄袭了他们的游戏Palworld&#xff0c;说这简直是太不可思议了。 Pocketpair的CEO Takuro Mizobe发布了一个叫Auroria的游戏的截图&#xff0c;然后说&#xff1a;“腾讯正在制作Palworld的克隆游戏&#xff01;在中国&a…

Python根据主播直播时间段判定订单销售额归属

写在前面&#xff1a;最近在群里看到一个这样的直播电商的场景觉得还是挺有趣的&#xff0c;于是就想用Python来实现。 需求描述&#xff1a;根据主播直播时间段结合销售订单的付款时间判断所属销售的归属 生成主播在线直播时间段数据 from datetime import datetime, time…

zabbix监控配置(添加主机、主机组和添加监控项等)

zabbix监控配置 文章目录 zabbix监控配置1.添加主机组2.添加主机&#xff08;linux&#xff09;3.添加主机&#xff08;windows&#xff09;4.监控项配置&#xff08;通过模板添加&#xff09;5.监控项配置&#xff08;手动添加&#xff09; 1.添加主机组 2.添加主机&#xff0…

学习Rust的第5天:控制流

Control flow, as the name suggests controls the flow of the program, based on a condition. 控制流&#xff0c;顾名思义&#xff0c;根据条件控制程序的流。 If expression If表达式 An if expression is used when you want to execute a block of code if a condition …

自定义vue-cli 实现预设模板项目

模板结构 主要包括四个部分&#xff1a; preset.jsonprompts.jsgenerator/index.jstemplate/ 项目最终结构 preset.json preset.json 中是一个包含创建新项目所需预定义选项和插件的 JSON 对象&#xff0c;让用户无需在命令提示中选择它们&#xff0c;简称预设&#xff1b;…

openGauss学习笔记-265 openGauss性能调优-TPCC性能调优测试指导-操作系统配置

文章目录 openGauss学习笔记-265 openGauss性能调优-TPCC性能调优测试指导-操作系统配置265.1安装openEuler操作系统265.2 修改操作系统内核PAGESIZE为64KB。265.3 关闭CPU中断的服务irqbalance openGauss学习笔记-265 openGauss性能调优-TPCC性能调优测试指导-操作系统配置 本…

绩效考核:关键成功因素法(CSF)

绩效考核是企业管理的核心环节&#xff0c;其目的是为了确保员工的工作表现符合组织的目标和期望。然而&#xff0c;传统的绩效考核方法往往只关注员工的业绩和产出&#xff0c;而忽略了员工的能力和潜力。关键成功因素法&#xff08;CSF&#xff09;作为一种新型的绩效考核方法…

Scala详解(5)

Scala 集合 概述 集合本质上就是一个用于存储1个到多个数据的容器。在Scala中&#xff0c;集合可以分为三大类&#xff1a;Seq(序列)&#xff0c;Set(集合)和Map(映射)。基于这三大类&#xff0c;衍生出来众多的子类 序列&#xff1a;元素有序可重复 集合&#xff1a;元素无…

通过控制台获取iptv直播地址

控制台代码1: // 获取所有包含频道名称和URL的<div>和<td>元素 const divElements = document.querySelectorAll(div[style="float: left;"]); const tdElements = document.querySelectorAll(td[style="padding-left: 6px;"]);// 创建空数组…

2011年认证杯SPSSPRO杯数学建模C题(第二阶段)你的爱车入保险了吗全过程文档及程序

2011年认证杯SPSSPRO杯数学建模 C题 你的爱车入保险了吗 原题再现&#xff1a; 近几年&#xff0c;国内汽车销售市场异常火爆&#xff0c;销售量屡创新高。车轮上的世界&#xff0c;保险已经与我们如影随形。汽车保险&#xff0c;简称车险&#xff0c;是指对机动车辆由于自然…

计算机考研都将采用408!?

这个根本不可能&#xff0c;高考还没做到全国统一考试呢 每个学校对于计算机招生的需求是不一样的&#xff0c;比如清华大学&#xff0c;专业课912&#xff0c;算的上是最难的计算机专业课了&#xff0c;那他为什么搞这么难啊&#xff0c;还不是因为那群敢考清华的卷王们太变态…

Python数据结构【二】查找

前言 可私聊进一千多人Python全栈交流群&#xff08;手把手教学&#xff0c;问题解答&#xff09; 进群可领取Python全栈教程视频 多得数不过来的计算机书籍&#xff1a;基础、Web、爬虫、数据分析、可视化、机器学习、深度学习、人工智能、算法、面试题等。 &#x1f680;&a…

C++奇迹之旅:构造函数

文章目录 &#x1f4dd;类的6个默认成员函数&#x1f320; 构造函数&#x1f309; 概念&#x1f309;特性&#x1f309;三种默认构造函数 &#x1f6a9;总结 &#x1f4dd;类的6个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的什么都没有吗&am…

【重磅开源】一款可以生成SpringBoot+Vue代码的轻量级项目

基于SpringBootVue3开发的轻量级快速开发脚手架 &#x1f341;项目简介 一款通用的前、后端项目模板 一款快速开发管理系统的项目 一款可以生成SpringBootVue代码的项目 一款持续迭代的开源项目 一个程序员的心血合集 度过严寒&#xff0c;终有春日&#xff…

FastJson转化时BigDecimal与Double问题

一、场景 在使用FastJson将json字符串转化为jsonObject时&#xff0c;FastJson默认会将小数转为BigDecimal类型&#xff0c;但有时候我们想要的是double类型。 二、解决方案 int disableDecimal JSON.DEFAULT_PARSER_FEATURE & ~Feature.UseBigDecimal.getMask(); Stri…

Nginx内存池相关源码剖析(一)总览

剖析nginx的内存池源码&#xff0c;讲解原理实现以及该内存池设计的应用场景 介绍 Nginx内存池是Nginx为了优化内存管理而引入的一种机制。在Nginx中&#xff0c;每个层级&#xff08;如模板、TCP连接、HTTP请求等&#xff09;都会创建一个内存池进行内存管理。当这些层级的…

Linux下redis的安装过程与配置详细教程【5.0.5为例子】

Linux下redis的安装过程与配置方法【5.0.5为例子】 下载redis redis下载地址 https://download.redis.io/releases/ 也可以自行去官网下载 提示&#xff1a;此处安装的为redis-5.05的版本 上传redis安装包(我的安装目录为/data/tool/redis-5.0.5) 创建目录/data/local/tool并…

Day20-【Java SE高级】单元测试 反射 注解 动态代理

一、单元测试 就是针对最小的功能单元(方法)&#xff0c;编写测试代码对其进行正确性测试。 1. 咱们之前是如何进行单元测试的?有啥问题? 只能在main方法编写测试代码&#xff0c;去调用其他方法进行测试。无法实现自动化测试&#xff0c;一个方法测试失败&#xff0c;可能…

Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇

修剪二叉搜索树 给定一个二叉搜索树&#xff0c;同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树&#xff0c;使得所有节点的值在[L, R]中 (R>L) 。你可能需要改变树的根节点&#xff0c;所以结果应当返回修剪好的二叉搜索树的新的根节点。 ​ 最直接的想法&#xff0…