Python根据主播直播时间段判定订单销售额归属

写在前面:最近在群里看到一个这样的直播电商的场景觉得还是挺有趣的,于是就想用Python来实现。

需求描述:根据主播直播时间段结合销售订单的付款时间判断所属销售的归属
在这里插入图片描述

生成主播在线直播时间段数据

from datetime import datetime, timedelta
import random
import pandas as pddef generate_live_data(start_time, live_duration, anchors, num_repeats=4):"""生成直播数据。参数:start_time (datetime): 直播开始时间。live_duration (timedelta): 直播时长。anchors (list): 主播列表。num_repeats (int): 每个主播重复直播的次数,默认为 4。返回:DataFrame: 包含生成的直播数据的 DataFrame,每行包括开始时间、结束时间和主播。"""live_data = []current_time = start_timefor anchor in anchors:for _ in range(num_repeats):  # 每人直播指定次数end_time = current_time + live_duration  # 计算直播结束时间live_data.append((current_time, end_time, anchor))current_time = end_time# 将列表转换为 DataFramedf = pd.DataFrame(live_data, columns=["Start Time", "End Time", "Anchor"])return df# 定义开始时间
start_time = datetime(2024, 4, 11, 0, 0)  # 2024年4月11日凌晨# 定义直播时长
live_duration = timedelta(hours=3)  # 每人直播三小时# 定义主播列表
anchors = ["Anchor 1", "Anchor 2", "Anchor 3", "Anchor 4"]# 生成直播数据
live_data_df = generate_live_data(start_time, live_duration, anchors)# 将数据写出到 Excel 文件
excel_file_path = "live_data.xlsx"
live_data_df.to_excel(excel_file_path, index=False)

主播数据展示

在这里插入图片描述

生成销售订单数据

import pandas as pd
from datetime import datetime, timedelta
import randomdef generate_purchase_data(start_time, end_time, time_interval, customers, products):"""生成模拟购买数据,并导出到 Excel 文件。参数:start_time (datetime): 数据开始时间。end_time (datetime): 数据结束时间。time_interval (timedelta): 时间间隔。customers (list): 模拟客户姓名列表。products (list): 模拟商品列表。返回:str: 导出的 Excel 文件路径。"""# 生成时间列表time_list = []current_time = start_timewhile current_time < end_time:time_list.append(current_time)current_time += time_interval# 生成模拟购买数据purchase_data = []for time in time_list:for customer in customers:product = random.choice(products)  # 随机选择一个商品quantity = random.randint(1, 5)  # 随机生成购买数量purchase_data.append((time, customer, product, quantity))# 将购买数据转换为 DataFramedf = pd.DataFrame(purchase_data, columns=["Time", "Customer", "Product", "Quantity"])# 导出到 Excel 文件excel_file = "purchase_data.xlsx"df.to_excel(excel_file, index=False)return excel_file# 定义开始时间和结束时间
start_time = datetime(2024, 4, 11, 0, 0)  # 2024年4月11日凌晨
end_time = datetime(2024, 4, 13, 0, 0)    # 2024年4月12日凌晨# 定义时间间隔
time_interval = timedelta(minutes=30)  # 每隔半小时# 定义模拟的客户姓名列表和商品列表
customers = ["Alice", "Bob", "Charlie", "David", "Emma"]
products = ["Product A", "Product B", "Product C", "Product D", "Product E"]# 生成购买数据并导出到 Excel 文件
excel_file_path = generate_purchase_data(start_time, end_time, time_interval, customers, products)print("数据已成功导出到 Excel 文件:", excel_file_path)

销售订单数据展示

在这里插入图片描述

根据销售数据匹配主播直播时间段并保存到Excel文件

有时候我们需要根据销售数据来匹配主播的直播时间段,以便进行更深入的分析。

1. 导入必要的模块

import pandas as pd
from datetime import datetime

2. 从Excel文件中读取销售数据和主播直播时间数据

# 从Excel文件中读取销售数据
sales_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\purchase_data.xlsx")# 将时间列转换为datetime类型
sales_data['Time'] = pd.to_datetime(sales_data['Time'])# 从Excel文件中读取主播直播时间数据
anchor_time_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\live_data.xlsx")# 将时间列转换为datetime类型
anchor_time_data['Start Time'] = pd.to_datetime(anchor_time_data['Start Time'])
anchor_time_data['End Time'] = pd.to_datetime(anchor_time_data['End Time'])

3. 初始化结果列表并遍历销售数据

# 初始化一个空列表,用于存储结果
result = []# 遍历销售数据,判断每笔销售属于哪个主播的直播时间段
for index, row in sales_data.iterrows():sale_time = row['Time']customer = row['Customer']product = row['Product']quantity = row['Quantity']# 判断销售时间在哪个主播的直播时间段内for _, anchor_row in anchor_time_data.iterrows():start_time = anchor_row['Start Time']end_time = anchor_row['End Time']anchor = anchor_row['Anchor']if start_time <= sale_time <= end_time:result.append((start_time, end_time, anchor,sale_time, customer, product, quantity))break

4. 将结果转换为DataFrame并保存到Excel文件

# 将结果转换为DataFrame
result_df = pd.DataFrame(result, columns=['Start Time', 'End Time', 'Anchor','sale_time', 'Customer', 'Product', 'Quantity'])# 将结果保存到Excel文件
excel_file_path = "live_data2.xlsx"
result_df.to_excel(excel_file_path, index=False)

5. 完整代码

import pandas as pd
from datetime import datetime# 从Excel文件中读取销售数据
sales_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\purchase_data.xlsx")# 将时间列转换为datetime类型
sales_data['Time'] = pd.to_datetime(sales_data['Time'])# 从Excel文件中读取主播直播时间数据
anchor_time_data = pd.read_excel("C:\\Users\\Administrator\\Desktop\\live_data.xlsx")# 将时间列转换为datetime类型
anchor_time_data['Start Time'] = pd.to_datetime(anchor_time_data['Start Time'])
anchor_time_data['End Time'] = pd.to_datetime(anchor_time_data['End Time'])# 初始化一个空列表,用于存储结果
result = []# 遍历销售数据,判断每笔销售属于哪个主播的直播时间段
for index, row in sales_data.iterrows():sale_time = row['Time']customer = row['Customer']product = row['Product']quantity = row['Quantity']# 判断销售时间在哪个主播的直播时间段内for _, anchor_row in anchor_time_data.iterrows():start_time = anchor_row['Start Time']end_time = anchor_row['End Time']anchor = anchor_row['Anchor']if start_time <= sale_time <= end_time:result.append((start_time, end_time, anchor,sale_time, customer, product, quantity))break# 将结果转换为DataFrame
result_df = pd.DataFrame(result, columns=['Start Time', 'End Time', 'Anchor','sale_time', 'Customer', 'Product', 'Quantity'])# 打印结果
print(result_df)excel_file_path = "live_data2.xlsx"
result_df.to_excel(excel_file_path, index=False)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/823157.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

zabbix监控配置(添加主机、主机组和添加监控项等)

zabbix监控配置 文章目录 zabbix监控配置1.添加主机组2.添加主机&#xff08;linux&#xff09;3.添加主机&#xff08;windows&#xff09;4.监控项配置&#xff08;通过模板添加&#xff09;5.监控项配置&#xff08;手动添加&#xff09; 1.添加主机组 2.添加主机&#xff0…

学习Rust的第5天:控制流

Control flow, as the name suggests controls the flow of the program, based on a condition. 控制流&#xff0c;顾名思义&#xff0c;根据条件控制程序的流。 If expression If表达式 An if expression is used when you want to execute a block of code if a condition …

自定义vue-cli 实现预设模板项目

模板结构 主要包括四个部分&#xff1a; preset.jsonprompts.jsgenerator/index.jstemplate/ 项目最终结构 preset.json preset.json 中是一个包含创建新项目所需预定义选项和插件的 JSON 对象&#xff0c;让用户无需在命令提示中选择它们&#xff0c;简称预设&#xff1b;…

openGauss学习笔记-265 openGauss性能调优-TPCC性能调优测试指导-操作系统配置

文章目录 openGauss学习笔记-265 openGauss性能调优-TPCC性能调优测试指导-操作系统配置265.1安装openEuler操作系统265.2 修改操作系统内核PAGESIZE为64KB。265.3 关闭CPU中断的服务irqbalance openGauss学习笔记-265 openGauss性能调优-TPCC性能调优测试指导-操作系统配置 本…

2011年认证杯SPSSPRO杯数学建模C题(第二阶段)你的爱车入保险了吗全过程文档及程序

2011年认证杯SPSSPRO杯数学建模 C题 你的爱车入保险了吗 原题再现&#xff1a; 近几年&#xff0c;国内汽车销售市场异常火爆&#xff0c;销售量屡创新高。车轮上的世界&#xff0c;保险已经与我们如影随形。汽车保险&#xff0c;简称车险&#xff0c;是指对机动车辆由于自然…

计算机考研都将采用408!?

这个根本不可能&#xff0c;高考还没做到全国统一考试呢 每个学校对于计算机招生的需求是不一样的&#xff0c;比如清华大学&#xff0c;专业课912&#xff0c;算的上是最难的计算机专业课了&#xff0c;那他为什么搞这么难啊&#xff0c;还不是因为那群敢考清华的卷王们太变态…

Python数据结构【二】查找

前言 可私聊进一千多人Python全栈交流群&#xff08;手把手教学&#xff0c;问题解答&#xff09; 进群可领取Python全栈教程视频 多得数不过来的计算机书籍&#xff1a;基础、Web、爬虫、数据分析、可视化、机器学习、深度学习、人工智能、算法、面试题等。 &#x1f680;&a…

C++奇迹之旅:构造函数

文章目录 &#x1f4dd;类的6个默认成员函数&#x1f320; 构造函数&#x1f309; 概念&#x1f309;特性&#x1f309;三种默认构造函数 &#x1f6a9;总结 &#x1f4dd;类的6个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的什么都没有吗&am…

【重磅开源】一款可以生成SpringBoot+Vue代码的轻量级项目

基于SpringBootVue3开发的轻量级快速开发脚手架 &#x1f341;项目简介 一款通用的前、后端项目模板 一款快速开发管理系统的项目 一款可以生成SpringBootVue代码的项目 一款持续迭代的开源项目 一个程序员的心血合集 度过严寒&#xff0c;终有春日&#xff…

Nginx内存池相关源码剖析(一)总览

剖析nginx的内存池源码&#xff0c;讲解原理实现以及该内存池设计的应用场景 介绍 Nginx内存池是Nginx为了优化内存管理而引入的一种机制。在Nginx中&#xff0c;每个层级&#xff08;如模板、TCP连接、HTTP请求等&#xff09;都会创建一个内存池进行内存管理。当这些层级的…

Linux下redis的安装过程与配置详细教程【5.0.5为例子】

Linux下redis的安装过程与配置方法【5.0.5为例子】 下载redis redis下载地址 https://download.redis.io/releases/ 也可以自行去官网下载 提示&#xff1a;此处安装的为redis-5.05的版本 上传redis安装包(我的安装目录为/data/tool/redis-5.0.5) 创建目录/data/local/tool并…

Day20-【Java SE高级】单元测试 反射 注解 动态代理

一、单元测试 就是针对最小的功能单元(方法)&#xff0c;编写测试代码对其进行正确性测试。 1. 咱们之前是如何进行单元测试的?有啥问题? 只能在main方法编写测试代码&#xff0c;去调用其他方法进行测试。无法实现自动化测试&#xff0c;一个方法测试失败&#xff0c;可能…

Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇

修剪二叉搜索树 给定一个二叉搜索树&#xff0c;同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树&#xff0c;使得所有节点的值在[L, R]中 (R>L) 。你可能需要改变树的根节点&#xff0c;所以结果应当返回修剪好的二叉搜索树的新的根节点。 ​ 最直接的想法&#xff0…

最强解释!Python 包的依赖管理,有解了!

之前一直比较抵触用 Python &#xff0c;很大一部分原因是觉得 Python 项目的环境管理比较混乱。Node.js 有 Npm 包管理工具&#xff0c;通过 package.json 配置项目依赖&#xff0c;最多再通过 nvm 来进行环境切换&#xff1b;Java 有 Maven Gradle 来进行包管理和项目依赖配置…

今天刷两题(day2)

题目一&#xff1a;最长公共前缀 题目描述&#xff1a; 给你一个大小为 n的字符串数组 strs &#xff0c;其中包含n个字符串 , 编写一个函数来查找字符串数组中的最长公共前缀&#xff0c;返回这个公共前缀。输入输出描述&#xff1a; 输入&#xff1a;"abca","…

MyBatis 源码分析 - SQL 的执行过程

MyBatis 源码分析 - SQL 的执行过程 * 本文速览 本篇文章较为详细的介绍了 MyBatis 执行 SQL 的过程。该过程本身比较复杂&#xff0c;牵涉到的技术点比较多。包括但不限于 Mapper 接口代理类的生成、接口方法的解析、SQL 语句的解析、运行时参数的绑定、查询结果自动映射、延…

C++ 秋招必知必会(数据结构与算法:下)

20. 二叉树的定义与操作 二叉树&#xff08;binary tree&#xff09;是一种非线性数据结构&#xff0c;代表着祖先与后代之间的派生关系&#xff0c;体现着“一分为二”的分治逻辑 与链表类似&#xff0c;二叉树的基本单元是节点&#xff0c;每个节点包含&#xff1a;值、左子…

MYSQL5.7详细安装步骤

MYSQL5.7详细安装步骤&#xff1a; 0、更换yum源 1、打开 mirrors.aliyun.com&#xff0c;选择centos的系统&#xff0c;点击帮助 2、执行命令&#xff1a;yum install wget -y 3、改变某些文件的名称 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base…

储能的全生命周期成本即平准化度电成本的计算方法及python实践

1. 平准化度电成本&#xff08;LCOE&#xff09;是一种衡量电力项目经济性的指标 LCOE&#xff08;Levelized Cost of Energy,&#xff09;的概念最早由美国国家可再生能源实验室&#xff08;NREL&#xff09;在1995年提出&#xff0c;它是通过将一个项目生命周期内的所有成本…

黑马头条项目结构

微服务架构具有许多优点&#xff0c;其中一些主要优点包括&#xff1a; 松耦合性&#xff1a;每个微服务都是独立的&#xff0c;可以独立部署、独立扩展和独立更新&#xff0c;这种松耦合性使得系统更加灵活&#xff0c;易于维护和演化。 技术多样性&#xff1a;由于每个微服务…