基于PyTorch神经网络进行温度预测——基于jupyter实现

导入环境

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline

读取文件

### 读取数据文件
features = pd.read_csv('temps.csv')
#看看数据长什么样子
features.head(5)

在这里插入图片描述
其中
数据表中

  • year,moth,day,week分别表示的具体的时间
  • temp_2:前天的最高温度值
  • temp_1:昨天的最高温度值
  • average:在历史中,每年这一天的平均最高温度值
  • actual:这就是我们的标签值了,当天的真实最高温度
  • friend:据说凑热闹

查阅数据维度

print('数据维度:', features.shape)

在这里插入图片描述

时间维度数据进行处理


# 处理时间数据
import datetime# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
查阅数据
data[:,5]

在这里插入图片描述

图像绘制

# 准备画图
# 指定默认风格
plt.style.use('fivethirtyeight')# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')# 朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')plt.tight_layout(pad=2)

在这里插入图片描述

独热编码

数据需要独热编码(One-Hot Encoding),许多机器学习算法预期输入是数值型的,并且它们在处理数值型数据时表现更好。
独热编码是一种处理分类数据的方法,特别是在分类数据的各个类别之间没有顺序或等级的情况下。以下是使用独热编码的几个原因:

  1. 避免数值偏见:在很多模型中,如线性模型和神经网络,使用普通的数值标签(如1, 2, 3…)可能导致模型误认为类别之间存在数值上的关系,比如2是1的两倍,这可能会引入模型误解。
  2. 改善模型性能:通过独热编码,模型可以更明确地捕捉到每个类别的独特性,因为每个类别都由一个独立的特征表示,这有助于提高模型的准确性和学习效率。
  3. 扩展特征空间:独热编码可以将分类变量转化为一个更大的固定长度的数值型特征向量,这使得算法能够更容易地在这些扩展的特征空间上进行操作和优化。
# 独热编码
features = pd.get_dummies(features)
features.head(5)

在这里插入图片描述

处理标签

# 标签
labels = np.array(features['actual'])
# 在特征中去掉标签
features= features.drop('actual', axis = 1)
# 名字单独保存一下
feature_list = list(features.columns)
# 转换成合适的格式
features = np.array(features)
features.shape

在这里插入图片描述

机器学习建模

数据标准化

标准化的作用:

  1. 消除量纲影响:在很多数据集中,不同的特征可能具有完全不同的量纲和单位(如公里、千克、百分比等)。未经标准化的数据如果直接用于模型训练,可能会因为量纲的差异而影响模型的性能,使得某些特征的权重过大或过小。

  2. 提高算法表现:很多机器学习算法(尤其是基于距离的算法如K-最近邻、支持向量机等)在处理数据时,会受到特征尺度的影响。通过标准化处理,可以确保每个特征对模型的影响是均衡的,从而提高算法的精确度和效率。

  3. 加速模型收敛:在使用梯度下降等优化算法时,如果数据集的特征尺度差异较大,可能会导致优化过程中步长的不均匀,使得收敛速度变慢。标准化后,由于所有特征都处在相同的尺度上,有助于加快学习算法的收敛速度。

  4. 应对异常值:标准化过程通常包括消除异常值的影响,比如通过将数据缩放到一个固定的范围(如0到1之间),或者通过z-score方法(即减去平均值,除以标准差)来减少某些极端值对整体数据分布的影响。

from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features[0]

在这里插入图片描述

torch搭建MLP模型

x = torch.tensor(input_features, dtype = float)y = torch.tensor(labels, dtype = float)# 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True) 
biases = torch.randn(128, dtype = float, requires_grad = True) 
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True) 
biases2 = torch.randn(1, dtype = float, requires_grad = True) learning_rate = 0.001 
losses = []for i in range(1000):# 计算隐层hidden = x.mm(weights) + biases# 加入激活函数hidden = torch.relu(hidden)# 预测结果predictions = hidden.mm(weights2) + biases2# 通计算损失loss = torch.mean((predictions - y) ** 2) losses.append(loss.data.numpy())# 打印损失值if i % 100 == 0:print('loss:', loss)#返向传播计算loss.backward()#更新参数weights.data.add_(- learning_rate * weights.grad.data)  biases.data.add_(- learning_rate * biases.grad.data)weights2.data.add_(- learning_rate * weights2.grad.data)biases2.data.add_(- learning_rate * biases2.grad.data)# 每次迭代都得记得清空weights.grad.data.zero_()biases.grad.data.zero_()weights2.grad.data.zero_()biases2.grad.data.zero_()

在这里插入图片描述

预测结果

predictions.shape

在这里插入图片描述

整体模型

input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(torch.nn.Linear(input_size, hidden_size),torch.nn.Sigmoid(),torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)# 训练网络
losses = []
for i in range(1000):batch_loss = []# MINI-Batch方法来进行训练for start in range(0, len(input_features), batch_size):end = start + batch_size if start + batch_size < len(input_features) else len(input_features)xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)prediction = my_nn(xx)loss = cost(prediction, yy)optimizer.zero_grad()loss.backward(retain_graph=True)optimizer.step()batch_loss.append(loss.data.numpy())# 打印损失if i % 100==0:losses.append(np.mean(batch_loss))print(i, np.mean(batch_loss))

在这里插入图片描述

预测结果

x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()

日期转换

# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) 
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60'); 
plt.legend()# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/814454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux第90步_异步通知实验

“异步通知”的核心就是信号&#xff0c;由“驱动设备”主动报告给“应用程序”的。 1、添加“EXTI3.c” #include "EXTI3.h" #include <linux/gpio.h> //使能gpio_request(),gpio_free(),gpio_direction_input(), //使能gpio_direction_output(),gpio_get_v…

有序二叉树的增删改查(源代码讲解)

有序二叉树的相关实体类 TreeNode类 二叉树结点类&#xff0c;包含三个属性&#xff1a;value&#xff0c;leftChild&#xff0c;rightChild 有序二叉树类就包括这样一个根节点 剩下的getter和setter方法&#xff0c;有参无参构造&#xff0c;toString方法都是老生长谈&…

Redis入门到通关之Hash命令

文章目录 ⛄介绍⛄命令⛄RedisTemplate API❄️❄️添加缓存❄️❄️设置过期时间(单独设置)❄️❄️添加一个Map集合❄️❄️提取所有的小key❄️❄️提取所有的value值❄️❄️根据key提取value值❄️❄️获取所有的键值对集合❄️❄️删除❄️❄️判断Hash中是否含有该值 ⛄…

阐述嵌入式系统的基本组成:硬件层、驱动层、操作系统层和应用层

大家好&#xff0c;今天给大家介绍阐述嵌入式系统的基本组成&#xff1a;硬件层、驱动层、操作系统层和应用层&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 嵌入式系统是一种能…

Java集合(一)--Map(2)

ConcurrentHashMap与HashTable 底层实现 在JDK1.7时&#xff0c;底层采用的是分段数组&#xff0b;链表的形式&#xff0c;在JDK1.8之后&#xff0c;采用的是与HashMap相同的形式&#xff0c;数组链表/红黑树。而HashTable采用的是数组链表的形式。 如何实现线程安全 Concu…

如何访问远程服务器?

在现代技术时代&#xff0c;随着信息化的快速发展&#xff0c;远程访问服务器已经成为了不可或缺的一种需求。无论是企业还是个人用户&#xff0c;都需要通过远程访问来管理、传输和获取数据。本文将介绍一种名为【天联】的工具&#xff0c;它能够通过私有通道进行远程服务器访…

vscode配置c\c++及美化

文章目录 vscode配置c\c及美化1.安装vscode2.汉化3.安装c\c插件4.安装mingw5.配置mingw6. 运行c代码6.1 创建代码目录6.2 设置文件配置6.3 创建可执行任务&#xff1a;task.json6.4 编译执行6.5 再写其他代码6.6 运行多个c文件 7. 运行c文件8.调式代码8.1 创建launch.json8.2 修…

【排序 贪心】3107. 使数组中位数等于 K 的最少操作数

算法可以发掘本质&#xff0c;如&#xff1a; 一&#xff0c;若干师傅和徒弟互有好感&#xff0c;有好感的师徒可以结对学习。师傅和徒弟都只能参加一个对子。如何让对子最多。 二&#xff0c;有无限多1X2和2X1的骨牌&#xff0c;某个棋盘若干格子坏了&#xff0c;如何在没有坏…

Springboot+Vue项目-基于Java+MySQL的母婴商城系统(附源码+演示视频+LW)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &…

常用组合逻辑电路模块(5):加法器

半加器和全加器 半加器 半加&#xff1a;只考虑两个加数本身&#xff0c;不考虑低位进位的加法运算。实现半加运算的逻辑电路称为半加器。 其对应真值表为&#xff1a; 由真值表可得逻辑表达式&#xff1a; 逻辑电路和框图如下&#xff1a; 其中&#xff0c;CO为进位输出端&…

家庭网络防御系统搭建-siem之security onion 安装配置过程详解

本文介绍一下security onion的安装流程&#xff0c;将使用该工具集中管理终端EDR和网络NDR sensor产生的日志。 充当SIEM的平台有很多&#xff0c;比如可以直接使用原生的elastic以及splunk等&#xff0c;security onion的优势在于该平台能够方便的集成网络侧&#xff08;比如…

Linux 硬链接和软链接怎么区分使用?

一、什么是硬链接和软链接 硬链接 在Linux操作系统中&#xff0c;硬链接相当于存储在硬盘驱动器中的文件&#xff0c;它实际上引用或指向硬盘驱动器上的某个点。硬链接是原始文件的镜像副本。 硬链接与软链接的区别在于&#xff0c;删除原始文件不会影响硬链接&#xff0c;但…

AI图书推荐:如何在课堂上使用ChatGPT 进行教育

ChatGPT是一款强大的新型人工智能&#xff0c;已向公众免费开放。现在&#xff0c;各级别的教师、教授和指导员都能利用这款革命性新技术的力量来提升教育体验。 本书提供了一个易于理解的ChatGPT解释&#xff0c;并且更重要的是&#xff0c;详述了如何在课堂上以多种不同方式…

【攻防世界】supersqli(堆叠注入)

进入题目环境&#xff0c;有输入框与注入参数&#xff0c;推测类型为SQL注入&#xff1a; 测试--注入类型为数字型还是字符型&#xff0c;构造payload&#xff1a;?inject1 or 12 并提交&#xff1a; 发现页面依然正常&#xff0c;说明注入类型为字符型&#xff0c;则继续检查…

ML在骨科手术术前、书中、术后方法应用综述【含数据集】

达芬奇V手术机器人 近年来,人工智能(AI)彻底改变了人们的生活。人工智能早就在外科领域取得了突破性进展。然而,人工智能在骨科中的应用研究尚处于探索阶段。 本文综述了近年来深度学习和机器学习应用于骨科图像检测的最新成果,描述了其贡献、优势和不足。以及未来每项研究…

用AI提升儿童英语口语:和小猪佩奇对话

小孩子大部分都是喜欢动画片的&#xff0c;如果能让动画片中的角色和他们进行口语对话&#xff0c;应该可以极大的激发他们英语学习兴趣。 下面&#xff0c;以小猪佩奇为例来说明如何利用AI来创建一个虚拟的英语口语陪练小猪佩奇角色。 在kimichat对话框中键入提示词&#xf…

360极速浏览器启动外部应用设置记住选择后无法启动应用

之前学习并测试过通过网页调用本地应用的路线&#xff0c;原理是在注册表中注册能在网页中调用的命令&#xff0c;然后在网页中通过命令调用本地应用。测试过程中发现使用版本为12.0.1212.0的360极速浏览器的极速模式下启动外部应用时&#xff0c;每次都会出现启动外部应用的提…

vue3 vueUse 连接蓝牙

目录 vueuse安装&#xff1a; useBluetooth: 调用蓝牙API 扫描周期设备 选择设备配对 连接成功 vue3的网页项目连接电脑或者手机上的蓝牙设备&#xff0c;使用vueUse库&#xff0c;可以快速检查连接蓝牙设备。 vueUse库使用参考&#xff1a; VueUse工具库 常用api-CSDN…

【spring】AOP切面注解学习(二)

文接上篇&#xff1a;【spring】AOP切面注解学习&#xff08;一&#xff09; AOP切面注解测试示例代码 示例代码 一 maven的pom文件导入 <dependency><groupId>org.springframework</groupId><artifactId>spring-aop</artifactId></depende…

itop4412内核编译_编译自定义函数到内核

我的itop4412开发板是半路捡的&#xff0c;所以没办法加他们的售后群&#xff0c;遇到的问题只好一点点记录吧 内核驱动编译 在日常工作过程中&#xff0c;编写内核程序可能机会不多&#xff0c;但是将厂商提供的内核源码编译到固件中&#xff0c;这个技能还是必须掌握的。 i…