波士顿房价预测案例(python scikit-learn)---多元线性回归(多角度实验分析)

波士顿房价预测案例(python scikit-learn)—多元线性回归(多角度实验分析)

这次实验,我们主要从以下几个方面介绍:

一、相关框架介绍

二、数据集介绍

三、实验结果-优化算法对比实验,数据标准化对比实验,正则化对比试验,多项式回归degree对比实验,岭回归alpha敏感度实验

一、相关框架介绍

Scikit-learn(全称:Simple and Efficient Tools for Machine Learning,意为“简单高效的机器学习工具”)是一个开源的Python机器学习库,它提供了简单而高效的工具,用于数据挖掘和数据分析。

Scikit-learn主要特点包括:丰富的算法库、易于使用、高效的性能、数据预处理和特征选择、模型评估和选择、可扩展性、社区支持。

二、数据集介绍

2.1数据集来源

波士顿房价数据集是一个著名的数据集,它在机器学习和统计分析领域中被广泛用于回归问题的实践和研究。这个数据集包含了美国马萨诸塞州波士顿郊区的房价信息,这些信息是由美国人口普查局收集的。
在这里插入图片描述
该数据集共包括507行数据,十三列特征,外加一列标签。

2.2数据集特征

数据集的特征:
CRIM: 城镇人均犯罪率 ZN: 占地面积超过25,000平方英尺的住宅用地比例
INDUS: 每个城镇非零售业务的比例 CHAS: 查尔斯河虚拟变量(如果是河道,则为1;否则为0)
NOX: 一氧化氮浓度(每千万份) RM: 每间住宅的平均房间数
AGE: 1940年以前建造的自住单位比例 DIS: 波士顿的五个就业中心加权距离
RAD: 径向高速公路的可达性指数 TAX: 每10,000美元的全额物业税率
PTRATIO: 城镇的学生与教师比例 B: 1000(Bk - 0.63)^ 2,其中Bk是城镇黑人的比例
LSTAT: 人口状况下降% MEDV: 自有住房的中位数报价, 单位1000美元

三、实验结果-优化算法对比实验,数据标准化对比实验,正则化对比试验,多项式回归degree对比实验,岭回归alpha敏感度实验

3.1 优化算法对比实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")#plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")#plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)#plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)#plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor+'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 数据标准化对比实验

# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")#plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")#plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)#plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)#plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor+'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4])

# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge, RidgeCV
X = boston.data
print(X.min(axis=0))
print(X.max(axis=0))y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
# X_train = ss_X.fit_transform(X_train
# X_test = ss_X.transform(X_test)
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)return lr,sgdr,ridge,lr_y_predict,sgdr_y_predict,ridge_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(y_test, lr_y_predict)print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(y_test, lr_y_predict)print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")# plt.bar(nmse_x,nmse,width=width, color="saddlebrown",label="mse")# plt.bar(mae_x,maes,width=width, color="red",label="mae")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)# plt.text(nmse_x[i],nmse[i], nmse[i],va="bottom",ha="center",fontsize=8)# plt.text(mae_x[i],maes[i], maes[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,model.predict(X),c="orange",edgecolors='k')print(model.predict(X))plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()
lr,sgdr,ridge,lr_y_predict,sgdr_y_predict,ridge_y_predict=train_model()models=[lr,sgdr,]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]plot_line(X,y,lr,'LinearRegression')
plot_line(X,y,sgdr,'SGDRegressor')
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)
plot(results[0][1:4],results[1][1:4])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 正则化对比试验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = LinearRegression()# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = SGDRegressor()# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso = Lasso(alpha=0.01)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='LinearRegression')plt.bar(mess_x,model2,width=width,color="silver",label="SGDRegressor")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")plt.bar(mae_x,model4,width=width, color="red",label="lasso-alpha=0.01")plt.title("lr,sdgr,lasso,ridge+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor'+ss)
plot_line(X,y,lasso,'lasso'+ss)
plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

在这里插入图片描述

3.4多项式回归degree对比实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置
from sklearn.preprocessing import PolynomialFeatures
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train[0]=y_train[0]+300
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():poly_reg = PolynomialFeatures(degree=1)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)# 建模#lin_reg = LinearRegression().fit(x_poly, y_data)lr = LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。poly_reg = PolynomialFeatures(degree=2)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)sgdr =  LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)poly_reg = PolynomialFeatures(degree=3)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)ridge =  LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassopoly_reg = PolynomialFeatures(degree=4)# 数据转换 x0-->1  x1-->x  x2-->x^2  x3-->x^3x_poly = poly_reg.fit_transform(X_train)lasso = LinearRegression().fit(x_poly, y_train[:,0])# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='ploy-degree=1')plt.bar(mess_x,model2,width=width,color="silver",label="ploy-degree=2")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ploy-degree=3")plt.bar(mae_x,model4,width=width, color="red",label="ploy-degree=4")plt.title("不同degree多项式回归+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
#plot_line(X,y,lr,'LinearRegression+'+ss)
#plot_line(X,y,sgdr,'SGDRegressor'+ss)
#plot_line(X,y,lasso,'lasso'+ss)
#plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

截图:
在这里插入图片描述

3.5 岭回归alpha敏感度实验


# 从 sklearn.datasets 导入波士顿房价数据读取器。
from sklearn.datasets import load_boston
# 从读取房价数据存储在变量 boston 中。
boston = load_boston()
# 输出数据描述。
from matplotlib import pyplot as plt
from matplotlib import font_manager
from matplotlib import pyplot as plt
import numpy as np
import matplotlib
# 参数设置import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题# 从sklearn.cross_validation 导入数据分割器。
from sklearn.model_selection import train_test_split
# 导入 numpy 并重命名为 np。
import numpy as np
from sklearn.linear_model import Ridge,Lasso
X = boston.data
y = boston.target
# 随机采样 25% 的数据构建测试样本,其余作为训练样本。X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)
# 分析回归目标值的差异。print("The max target value is", np.max(boston.target))
print("The min target value is", np.min(boston.target)) 
print("The average target value is", np.mean(boston.target))# 从 sklearn.preprocessing 导入数据标准化模块。
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import Normalizer
# 分别初始化对特征和目标值的标准化器。
ss_X = StandardScaler()
ss_y = StandardScaler()
ss="StandardScaler"
# 分别对训练和测试数据的特征以及目标值进行标准化处理。
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)
y_train[0]=y_train[0]+300
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))y_test = ss_y.transform(y_test.reshape(-1, 1))# 从 sklearn.linear_model 导入 LinearRegression。
from sklearn.linear_model import LinearRegression
# 使用默认配置初始化线性回归器 LinearRegression。def train_model():lr = Ridge(alpha=2)# 使用训练数据进行参数估计。lr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lr_y_predict = lr.predict(X_test)# 从 sklearn.linear_model 导入 SGDRegressor。from sklearn.linear_model import SGDRegressor# 使用默认配置初始化线性回归器 SGDRegressor。sgdr = Ridge(alpha=5)# 使用训练数据进行参数估计。sgdr.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。sgdr_y_predict = sgdr.predict(X_test)ridge = Ridge(alpha=10)# 使用训练数据进行参数估计。ridge.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。ridge_y_predict = ridge.predict(X_test)# Lassolasso =Ridge(alpha=15)# 使用训练数据进行参数估计。lasso.fit(X_train, y_train[:,0])# 对测试数据进行回归预测。lasso_y_predict = lasso.predict(X_test)return lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predictdef evaluate(X_test,y_test,lr_y_predict,model):
# 使用 LinearRegression 模型自带的评估模块,并输出评估结果。nmse=model.score(X_test, y_test)print('The value of default measurement of LinearRegression is',nmse )# 从 sklearn.metrics 依次导入 r2_score、mean_squared_error 以及 mean_absoluate_error 用于回归性能的评估。from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error# 使用 r2_score 模块,并输出评估结果。r2=r2_score(y_test, lr_y_predict)print('The value of R-squared of LinearRegression is',r2 )# 使用 mean_squared_error 模块,并输出评估结果。#print(y_test)lr_y_predict=lr_y_predict.reshape(len(lr_y_predict),-1)#print(lr_y_predict)#print(mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))mse=mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean squared error of LinearRegression is',mse)# 使用 mean_absolute_error 模块,并输出评估结果。mae= mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict))print('The mean absoluate error of LinearRegression is', mae)return round(nmse,2),round(r2,2),round(mse,2),round(mae,2)def plot(model1,model2,model3,model4):
# 数据classes = [ 'r2', 'mse', 'mae']# r2s = [87, 85, 89, 81, 78]# mess = [85, 98, 84, 79, 82]# nmse = [83, 85, 82, 87, 78]# 将横坐标班级先替换为数值x = np.arange(len(classes))width = 0.2r2s_x = xmess_x = x + widthnmse_x = x + 2 * widthmae_x = x + 3 * width# 绘图plt.bar(r2s_x, model1, width=width, color='gold', label='ridge-alpha=2')plt.bar(mess_x,model2,width=width,color="silver",label="ridge-alpha=5")plt.bar(nmse_x,model3,width=width, color="saddlebrown",label="ridge-alpha=10")plt.bar(mae_x,model4,width=width, color="red",label="ridge-alpha=15")plt.title("不同alpha-ridge+"+ss+"性能对比图")#将横坐标数值转换为班级plt.xticks(x + width, classes)#显示柱状图的高度文本for i in range(len(classes)):plt.text(r2s_x[i],model1[i], model1[i],va="bottom",ha="center",fontsize=8)plt.text(mess_x[i],model2[i], model2[i],va="bottom",ha="center",fontsize=8)plt.text(nmse_x[i],model3[i], model3[i],va="bottom",ha="center",fontsize=8)plt.text(mae_x[i],model4[i], model4[i],va="bottom",ha="center",fontsize=8)#显示图例plt.legend(loc="upper right")plt.show()#coding=gbk;def plot_line(X,y,model,name):#--------------------------------------------------------------#z是我们生成的等差数列,用来画出线性模型的图形。z=np.linspace(0,50,200).reshape(-1,1)plt.scatter(y,ss_y.inverse_transform(model.predict(ss_X.transform(X)).reshape(len(X),-1)),c="orange",edgecolors='k')plt.plot(z,z,c="k")plt.xlabel('y')plt.ylabel("y_hat")plt.title(name)plt.show()lr,sgdr,ridge,lasso,lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict=train_model()models=[lr,sgdr,ridge,lasso]
r2s=[]
mess=[]
maes=[]
nmse=[]
results=[]
plot_line(X,y,lr,'LinearRegression+'+ss)
plot_line(X,y,sgdr,'SGDRegressor'+ss)
plot_line(X,y,lasso,'lasso'+ss)
plot_line(X,y,ridge,'ridge'+ss)
print("sgdr_y_predict")
print(sgdr_y_predict)predicts=[lr_y_predict,sgdr_y_predict,ridge_y_predict,lasso_y_predict]
i=0
for model in models:result=evaluate(X_test,y_test,predicts[i],model)i=i+1results.append(result)# r2s.append(result[1])# mess.append(result[2])# maes.append(result[3])# nmse.append(result[0])#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
print(results)#evaluate(X_test,y_test,sgdr_y_predict,sgdr)
plot(results[0][1:4],results[1][1:4],results[2][1:4],results[3][1:4])

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791288.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Head First Design Patterns -代理模式

什么是代理模式 代理模式为另一个对象提供替身或者占位符,以便控制客户对对象的访问,管理访问的方式有很多种。例如远程代理、虚拟代理、保护代理等。 远程代理:管理客户和远程对象之间的交互。 虚拟代理:控制访问实例化开销大的对…

Docker实战教程 第3章 Dockerfile

4-2 通过dockerfile制作镜像 需求 制作一个具有ping ip ifconfig vim 这些命令工具的一个nginx镜像,通过dockerfile完成STEP1 : 写一个Dockerfile FROM nginx # 基于一个基础镜像 RUN lsstep2 docker build . -f 指定使用的dockerfile来生成镜像-t 指定镜像名…

算法基础--二分

😀前言 二分查找是一种常见的算法技巧,通过不断缩小搜索范围,快速找到目标值的算法。在实际应用中,二分查找可以应用于有序数组中的查找、求上界、求下界等问题,具有较高的效率和广泛的应用价值。 🏠个人主…

pdf图片识别分类

文章目录 解析pdf数据ocr识别分类方法分类完提示 解析pdf数据 试了几种方法 fitz-get_image后面方法不适用,用pixmap分辨率低 用pypdf2版本低方法用不了 用pdf2image还要下依赖工具 用spire.pdf的SaveAsImage分辨率低,ExtractImages可以但运行慢 先用sp…

动手做一个最小Agent——TinyAgent!

Datawhale干货 作者:宋志学,Datawhale成员 前 言 大家好,我是不要葱姜蒜。在ChatGPT横空出世,夺走Bert的桂冠之后,大模型愈发地火热,国内各种模型层出不穷,史称“百模大战”。大模型的能力是毋…

非阻塞connect的正确使用方式

问题 在使用非阻塞connect时,发现在服务端没有运行时,连接成功,发现是对于connect返回为-1时,对错误码没有做正确的处理,只是对于errno为EINTR做了处理,其它错误码时使用select判断是否可写,可…

字符分类函数

字符分类函数 C语言中有⼀系列的函数是专门做字符分类的,也就是⼀个字符是属于什么类型的字符的。这些函数的使用都需要包含⼀个头文件是 ctype.h 这些函数的使用方法非常类似,我们就讲解⼀个函数的事情,其他的非常类似: int i…

图的应用解析

01.任何一个无向连通图的最小生成树(B )。 A.有一棵或多棵 B.只有一棵 C.一定有多棵 D.可能不存在 02.用Prim算法和Kruskal算法构造图的最小生成树&#xff0c…

内存和网卡压力测试

1.内存压力测试 1.1测试目的 内存压力测试的目的是评估开发板中的内存子系统性能和稳定性,以确保它能够满足特定的应用需求。开发板通常用于嵌入式系统、物联网设备、嵌入式智能家居等场景,这些场景对内存的要求通常比较高。 其内存压力测试的主要目的…

开发板通过Ethernet(以太网口)与笔记本相连,并通过笔记本wifi连接手机热点来访问外网

文章目录 1、连接开发板与笔记本:2、配置笔记本的网络共享:3、配置开发板的网络设置:4、验证网络连接: 1、连接开发板与笔记本: 使用一根网线将开发板的Ethernet接口与笔记本的以太网口相连。 2、配置笔记本的网络共…

【深度学习】sdwebui的token_counter,update_token_counter,如何超出77个token的限制?对提示词加权的底层实现

文章目录 前言关于token_counter关于class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing)如何超出77个token的限制?对提示词加权的底层实现Overcoming the 77 token limit in diffusers方法1 手动拼方法2 compel 问询、帮助请看: 前言 …

Linux系统切割文件和合并文件介绍

split 和 cat 是 Linux 系统中用于文件切割和合并的命令。它们可以用于将大文件分割成多个小文件,或者将多个小文件合并成一个大文件。 1. split 命令用于将一个大文件切割成多个小文件。它的基本语法如下: split [-a num][-d][-l num][file][prefix] 其…

JS 数组方法 slice 和 splice 的区别

1. slice 概述 slice 方法用于提取数组中的一部分,返回提取结果,不会改变原数组 语法 array.slice(start, end)start 起始位置 end 可选参数,结束位置返回值: 起始位置到结束位置之间的数据,包含起始位置,但是不包含…

动规训练2

一、最小路径和 1、题目解析 就是一个人从左上往做下走,每次只能往右或者往下,求他到终点时,路径上数字和最小,返回最小值 2、算法原理 a状态表示方程 小技巧:经验题目要求 用一个二维数组表示,创建一个…

Flask Python:数据库多条件查询,flask中模型关联

前言 在上一篇Flask Python:模糊查询filter和filter_by,数据库多条件查询中,已经分享了几种常用的数据库操作,这次就来看看模型的关联关系是怎么定义的,先说基础的关联哈。在分享之前,先分享官方文档,点击查看 从文档…

蓝桥杯算法基础(36)动态规划dp经典问题详解

动态规划 -动态规划方法方法代表了这一类问题(最优子结构or子问题最优性)的有一半解法,是设计方法或者策略,不是具体算法 -本质是递推,核心是找到状态转移的方式,写出dp方程 -形式:记忆性递归递推01背包问题…

FreeRTOS中断管理以及实验

FreeRTOS中断管理以及实验 继续记录学习FreeRTOS的博客,参照正点原子FreeRTOS的视频。 ARM Cortex-M 使用了 8 位宽的寄存器来配置中断的优先等级,这个寄存器就是中断优先级配置寄存器 , STM32寄存器中并且这个寄存器只使用[7:4]&#xff0c…

Rust 中的字符串类型:`str` 和 `String`

Rust 中的字符串类型:&str 和 String 文章目录 Rust 中的字符串类型:&str 和 String1. &str:不可变的字符串引用2. String:可变的字符串3、字符串使用综合案例代码执行结果 在 Rust 编程语言中,有两种主要…

RTX RTOS 操作实例分析之---线程(thread)

0 Preface/Foreword 1 线程(thread) 1.1 线程定义 1.1.1 USE_BASIC_THREADS(宏定义) 经过以上步骤(makefile包含),USE_BASIC_THREADS在编译阶段被定义到相应的模块中。 1.1.2 定义线程ID变量…

安装Pillow库的方法最终解答!_Python第三方库

安装Python第三方库Pillow 我的环境:Window10,Python3.7,Anaconda3,Pycharm2023.1.3 pillow库 Pillow库是一个非常强大的图像处理库。它提供了广泛的图像处理功能,让我们可以轻松地读取和保存图像、创建缩略图和合并到…