FreeRTOS中断管理以及实验

FreeRTOS中断管理以及实验

继续记录学习FreeRTOS的博客,参照正点原子FreeRTOS的视频。
ARM Cortex-M 使用了 8 位宽的寄存器来配置中断的优先等级,这个寄存器就是中断优先级配置寄存器 ,
STM32寄存器中并且这个寄存器只使用[7:4],所以具体表达优先级的位数如下图所示:
在这里插入图片描述
STM32的中断优先级可以分为抢占优先级和子优先级。
1:抢占优先级:抢占优先级高的中断可以打断正在执行但抢先优先级低的中断。
2:子优先级:当同时发生具有相同抢占优先级的两个中断时候,子优先级小的优先执行,但是抢占优先级相同的时候,子优先级之间不能发生打断。只能一个执行完继续执行下一个。

在这里插入图片描述

STM32中中断分组分为5个优先级分组,而FreeRTOS中了为了方便管理,采用中断分组4,也就是全部4bit用于抢占优先级,而抢占优先级的范围也就是0-15。然后FreeRTOS管理的中断级别从5-15。
接下来要了解中断相关的寄存器以及在FreeRTOS如何配置寄存器。中断相关的寄存器为SHPR1、SHPR2、SHPR3。
并且这三个寄存器的地址分别为:0xE000ED18、0xE000ED1C、0xE000ED20。具体每个地址对应的中断设置优先级可以从手册区看到:

在这里插入图片描述

接下来要讲PendSV和SysTick设置为最低的优先级15如何设置。

 /* Make PendSV and SysTick the lowest priority interrupts. */portNVIC_SHPR3_REG |= portNVIC_PENDSV_PRI;portNVIC_SHPR3_REG |= portNVIC_SYSTICK_PRI;/* Constants required to manipulate the core.  Registers first... */#define portNVIC_SYSTICK_CTRL_REG             ( *( ( volatile uint32_t * ) 0xe000e010 ) )#define portNVIC_SYSTICK_LOAD_REG             ( *( ( volatile uint32_t * ) 0xe000e014 ) )#define portNVIC_SYSTICK_CURRENT_VALUE_REG    ( *( ( volatile uint32_t * ) 0xe000e018 ) )#define portNVIC_SHPR3_REG                    ( *( ( volatile uint32_t * ) 0xe000ed20 ) )#define portNVIC_PENDSV_PRI                   ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )#define portNVIC_SYSTICK_PRI                  ( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY			15                      //中断最低优先级#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY	5                       //系统可管理的最高中断优先级#define configKERNEL_INTERRUPT_PRIORITY 		( configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )#define configMAX_SYSCALL_INTERRUPT_PRIORITY 	( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )#ifdef __NVIC_PRIO_BITS#define configPRIO_BITS       		__NVIC_PRIO_BITS
#else#define configPRIO_BITS       		4                  
#endif

接下来让我们来理解上面的这部分代码。通用的步骤为:
1:计算新值:首先,你计算一个值,该值在你想要修改的位上有所改变,在其他位上为0。这通常通过将一个数值左移到正确的位置来完成。
2:应用新值:然后,你使用“或等于”(|=)操作符,将这个值“或”到寄存器的当前值上。在我们的例子中,这意味着如果portNVIC_PENDSV_PRI中设定的位在portNVIC_SHPR3_REG中已经是1,它们会保持为1;如果是0,则根据portNVIC_PENDSV_PRI中的相应位被设置为1或保持为0。
这里假如我们要设置PendSV的优先级为15,我们首先要计算在想改变的位置的值是多少。这里要把优先级设置为15,并且中断分组为4,且只用高四位。所以将15左移4位。这里定义了PendSV和SysTick中断的优先级。这些优先级是通过将configKERNEL_INTERRUPT_PRIORITY左移16位或24位来设置的。这样做是因为在portNVIC_SHPR3_REG寄存器中,PendSV和SysTick的优先级字段位于不同的位置。
所以关于PendSV和SysTick中断优先级的配置完成。
三个中断屏蔽寄存器,分别为 PRIMASK、 FAULTMASK 和BASEPRI 。
在这里插入图片描述
FreeRTOS使用的中断屏蔽寄存器为:BASEPRI
关闭程序具体如下:

#define portDISABLE_INTERRUPTS() 		vPortRaiseBASEPRI()
static portFORCE_INLINE void vPortRaiseBASEPRI( void ) 
{ uint32_t ulNewBASEPRI = configMAX_SYSCALL_INTERRUPT_PRIORITY; __asm {msr basepri, ulNewBASEPRI dsb isb} 
}
#define configMAX_SYSCALL_INTERRUPT_PRIORITY            ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY        5      /* FreeRTOS可管理的最高中断优先级 */ 

当BASEPRI设置为0x50时:
在这里插入图片描述
在中断服务函数中调度FreeRTOS的API函数需注意:
1、中断服务函数的优先级需在FreeRTOS所管理的范围内
2、在中断服务函数里边需调用FreeRTOS的API函数,必须使用带“FromISR”后缀的函数
开中断程序为:

#define portENABLE_INTERRUPTS()		 vPortSetBASEPRI( 0 )
static portFORCE_INLINE void vPortSetBASEPRI( uint32_t ulBASEPRI ) 
{ __asm{msr basepri, ulBASEPRI} 
}

下面通过编写程序来使用FreeRTOS中断管理:

在这里插入图片描述
接下来我们添加定时器中断相关的.c文件。这里顺便复习下STM32的定时器中断。参照正点原子HAL库开发手册。
STM32 的通用定时器是一个通过可编程预分频器(PSC)驱动的 16 位自动装载计数器(CNT)构成。STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。

在这里插入图片描述

控制寄存器 1(TIMx_CR1):
在这里插入图片描述

这里只用到了最低位。接下来介绍第二个与我们这章密切相关的寄存器:DMA/中断使能寄存器(TIMx_DIER)。该寄存器是一个 16 位的寄存器。
在这里插入图片描述

同时这个寄存器的第0位我们要设置为允许更新中断。也就是设置为1.
预分频寄存器(TIMx_PSC)。该寄存器用设置对时钟进行分频,然后提供给计数器,作为计数器的时钟。该寄存器的各位描述如图所示:

在这里插入图片描述
然后定时器的来源有以下四种:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

接下来我们来编写程序。由于题目要求俩个定时器,所以我们要再初始化一个定时器。这里初始化定时器4.

TIM_HandleTypeDef TIM3_Handler;      //定时器句柄 
TIM_HandleTypeDef TIM4_Handler;      //定时器句柄 
//通用定时器3中断初始化
//arr:自动重装值。
//psc:时钟预分频数
//定时器溢出时间计算方法:Tout=((arr+1)*(psc+1))/Ft us.
//Ft=定时器工作频率,单位:Mhz
//这里使用的是定时器3!
void TIM3_Init(u16 arr,u16 psc)
{  TIM3_Handler.Instance=TIM3;                          //通用定时器3TIM3_Handler.Init.Prescaler=psc;                     //分频系数TIM3_Handler.Init.CounterMode=TIM_COUNTERMODE_UP;    //向上计数器TIM3_Handler.Init.Period=arr;                        //自动装载值TIM3_Handler.Init.ClockDivision=TIM_CLOCKDIVISION_DIV1;//时钟分频因子HAL_TIM_Base_Init(&TIM3_Handler);HAL_TIM_Base_Start_IT(&TIM3_Handler); //使能定时器3和定时器3更新中断:TIM_IT_UPDATE   
}void TIM4_Init(u16 arr,u16 psc)
{  TIM3_Handler.Instance=TIM4;                          //通用定时器4TIM3_Handler.Init.Prescaler=psc;                     //分频系数TIM3_Handler.Init.CounterMode=TIM_COUNTERMODE_UP;    //向上计数器TIM3_Handler.Init.Period=arr;                        //自动装载值TIM3_Handler.Init.ClockDivision=TIM_CLOCKDIVISION_DIV1;//时钟分频因子HAL_TIM_Base_Init(&TIM4_Handler);HAL_TIM_Base_Start_IT(&TIM4_Handler); //使能定时器4和定时器4更新中断:TIM_IT_UPDATE   
}//定时器底册驱动,开启时钟,设置中断优先级
//此函数会被HAL_TIM_Base_Init()函数调用
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
{if(htim->Instance==TIM3){__HAL_RCC_TIM3_CLK_ENABLE();            //使能TIM3时钟HAL_NVIC_SetPriority(TIM3_IRQn,4,0);    //设置中断优先级,抢占优先级1,子优先级0HAL_NVIC_EnableIRQ(TIM3_IRQn);          //开启TIM3中断   }if(htim->Instance==TIM4){__HAL_RCC_TIM4_CLK_ENABLE();            //使能TIM4时钟HAL_NVIC_SetPriority(TIM4_IRQn,6,0);    //设置中断优先级,抢占优先级1,子优先级0HAL_NVIC_EnableIRQ(TIM4_IRQn);          //开启TIM4中断   }
}
//定时器3中断服务函数
void TIM3_IRQHandler(void)
{HAL_TIM_IRQHandler(&TIM3_Handler);
}
//定时器4中断服务函数
void TIM4_IRQHandler(void)
{HAL_TIM_IRQHandler(&TIM4_Handler);
}//回调函数,定时器中断服务函数调用
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{if(htim==(&TIM3_Handler)){printf("TIM3优先级为4的正在运行!!!\r\n");}else if (htim==(&TIM4_Handler)){printf("TIM4优先级为6的正在运行!!!\r\n");}
}

主程序创建两个任务即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/791270.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Rust 中的字符串类型:`str` 和 `String`

Rust 中的字符串类型&#xff1a;&str 和 String 文章目录 Rust 中的字符串类型&#xff1a;&str 和 String1. &str&#xff1a;不可变的字符串引用2. String&#xff1a;可变的字符串3、字符串使用综合案例代码执行结果 在 Rust 编程语言中&#xff0c;有两种主要…

RTX RTOS 操作实例分析之---线程(thread)

0 Preface/Foreword 1 线程&#xff08;thread&#xff09; 1.1 线程定义 1.1.1 USE_BASIC_THREADS&#xff08;宏定义&#xff09; 经过以上步骤&#xff08;makefile包含&#xff09;&#xff0c;USE_BASIC_THREADS在编译阶段被定义到相应的模块中。 1.1.2 定义线程ID变量…

安装Pillow库的方法最终解答!_Python第三方库

安装Python第三方库Pillow 我的环境&#xff1a;Window10&#xff0c;Python3.7&#xff0c;Anaconda3&#xff0c;Pycharm2023.1.3 pillow库 Pillow库是一个非常强大的图像处理库。它提供了广泛的图像处理功能&#xff0c;让我们可以轻松地读取和保存图像、创建缩略图和合并到…

Java学习day5-面向对象2

构建标准JavaBean快捷方式 快捷键&#xff1a;altinsert(Fn)->构造函数->全选构造带参方法&#xff0c;不选择则空参构造 插件&#xff1a;ptg,安装后右键单击&#xff0c;倒数第三个则为一键构造所有set/get函数 数据类型 基本数据类型&#xff1a;数据值存储在自己的…

欧拉路径欧拉回路

欧拉回路&#xff0c;指遍历图时通过图中每条边且仅通过一次&#xff0c;最终回到起点的一条闭合回路&#xff0c;适用于有向图与无向图&#xff0c;如果不强制要求回到起点&#xff0c;则被称为欧拉路径。 欧拉图&#xff1a;具备欧拉回路的图 无向图&#xff1a;图的所有顶…

代码随想录 Day37 738.单调递增的数字 968.监控二叉树

738.单调递增的数字 class Solution { public:int monotoneIncreasingDigits(int N) {string strNum to_string(N);// flag用来标记赋值9从哪里开始// 设置为这个默认值&#xff0c;为了防止第二个for循环在flag没有被赋值的情况下执行int flag strNum.size();for (int i s…

37-巩固练习(一)

37-1 if语句等 1、问&#xff1a;输出结果 int main() {int i 0;for (i 0; i < 10; i){if (i 5){printf("%d\n", i);}return 0;} } 答&#xff1a;一直输出5&#xff0c;死循环 解析&#xff1a;i5是赋值语句&#xff0c;不是判断语句&#xff0c;每一次循…

路径规划——曲线拟合详解(一):多项式轨迹与QP优化(minimum-snap算法核心部分)

前言 历经一个多星期时间&#xff0c;我们在路径规划——搜索算法部分讲解了7种常见的路径搜索算法&#xff0c;每一种算法的链接放在下面了&#xff0c;有需要的朋友点击跳转即可&#xff1a; 路径规划——搜索算法详解&#xff08;一&#xff09;&#xff1a;Dijkstra算法详…

由平行公设的不同而来三种几何学浅谈

由平行公设的不同而来三种几何学浅谈 欧几里德的《几何原本》 欧几里德的《几何原本》一开始就给出了23个定义&#xff0c;5个公设&#xff0c;5个公理。 23个定义(部分)&#xff1a; 点是没有部分的东西。 线是没有宽度的长度。 线的端点是点。 直线是各点都在同一方向上…

GraalVM运行模式和企业级应用

文章目录 GraalVM运行模式JIT模式AOT模式 GraalVM的问题和解决方案GraalVM企业级应用传统架构的问题Serverless架构函数计算Serverless应用场景Serverless应用 GraalVM内存参数 GraalVM运行模式 JIT模式 JIT&#xff08; Just-In-Time &#xff09;模式 &#xff0c;即时编译模…

重置gitlab root密码

gitlab-rails console -e production user User.where(id: 1).first user User.where(name: "root").first #输入重置密码命令 user.password"admin123!" #再次确认密码 user.password_confirmation"admin123!" #输入保存命令&am…

单例(Singleton)设计模式总结

1. 设计模式概述&#xff1a; 设计模式是在大量的实践中总结和理论化之后优选的代码结构、编程风格、以及解决问题的思考方式。设计模式免去我们自己再思考和摸索。 就像是经典的棋谱&#xff0c;不同的棋局&#xff0c;我们用不同的棋谱。"套路"经典的设计模式一共有…

Ruby 之交租阶段信息生成

题目 我看了一下&#xff0c;这个题目应该不是什么机密&#xff0c;所以先放上来了。大概意思是根据合同信息生成交租阶段信息。 解答 要求是要使用 Ruby 生成交租阶段信息&#xff0c;由于时间比较仓促&#xff0c;变量名那些就用得随意了些。要点主要有下面这些&#xff1a…

【介绍什么是DDOS】

&#x1f308;个人主页:程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

Qt 的发展历史、现状与启示

Qt 最早在1991年由挪威的两位程序员 Eirik Chambe-Eng 和 Haavard Nord 开发&#xff0c;他们在1994年创立 Trolltech 公司&#xff08;奇趣科技&#xff09;正式经营软件业务。Qt 的第一个公众预览版于1995年面世&#xff0c;之后在2008年被诺基亚收购&#xff1b;2011年到201…

【C++】编程规范之内存规则

在高质量编程中&#xff0c;内存管理是一个至关重要的方面。主要有以下原则&#xff1a; 内存分配后需要检查是否成功&#xff1a;内存分配可能会失败&#xff0c;特别是在内存紧张的情况下。因此&#xff0c;在分配内存后&#xff0c;应该检查分配是否成功。 int* ptr new …

【ZZULIOJ】1030: 判断直角三角形(Java)

目录 题目描述 输入 输出 样例输入 Copy 样例输出 Copy code 题目描述 输入三个正整数&#xff0c;判断用这三个整数做边长是否能构成一个直角三角形。 输入 输入三个正整数。 输出 能否构成直角三角形。如能输出&#xff1a;yes.若不能&#xff0c;输出&#xff1a…

java操作mongodb详解

前言 一切操作都应该以官方文档为准&#xff0c;mongodb官网文档地址&#xff1a; https://www.mongodb.com/docs/ &#xff0c;网上关于java操作mongodb的文章偏少&#xff0c;而且有些乱。这篇文章是在项目中使用mongodb后的一些总结&#xff0c;希望能帮到大家。 1.创建mon…

(译) 理解 Elixir 中的宏 Macro, 第四部分:深入化

Elixir Macros 系列文章译文 [1] (译) Understanding Elixir Macros, Part 1 Basics[2] (译) Understanding Elixir Macros, Part 2 - Macro Theory[3] (译) Understanding Elixir Macros, Part 3 - Getting into the AST[4] (译) Understanding Elixir Macros, Part 4 - Divin…

如何开启MySQL的binlog日志

1.启用远程连接&#xff1a; 如果你想要允许远程主机连接到MySQL服务器&#xff0c;需要进行以下步骤&#xff1a; 确保MySQL服务器的防火墙允许远程连接的流量通过。在MySQL服务器上&#xff0c;编辑MySQL配置文件&#xff08;一般是my.cnf&#xff09;&#xff0c;找到bind-…