深度学习pytorch——卷积神经网络(持续更新)

计算机如何解析图片?

在计算机的眼中,一张灰度图片,就是许多个数字组成的二维矩阵,每个数字就是此点的像素值(图-1)。在存储时,像素值通常位于[0, 255]区间,在深度学习中,像素值通常位于[0, 1]区间。

图-1

一张彩色图片,是使用三张图片叠加而成,即RGB(red green blue)(图-2)。

图-2

什么是卷积?

标准的神经网络是全连接的方式,全连接会获取更多的信息,但同时也包含着巨大的算力需求。在以前,算力完全不足以支撑如此巨大的计算量,但是又要进行处理,因此当时的人们联想到了人类观察事物的过程,即结合人眼观察事物的角度——先观察吸引我们的点,忽略不吸引我们的点,这称为局部相关性(Receptive Field。应用到神经网络中,就出现了卷积的概念。

卷积操作就是先仅仅观察一部分,然后移动视野观察下一部分,这就称为卷积操作(图-3)。

图-3

表现在神经网络中就相当于只连接局部相关性的属性(假设红色的线都是相关的,其它的都断开,当然红色的线都是我自己瞎画的),如图-4所示:

图-4

 表现在实例上就是图-5的情况:

图-5

卷积的数学表示:设x(t)为输入的数据,h(t)为遍历使用的矩阵,y(t)为经过卷积计算得到的矩阵,将x(t)和h(t)进行点乘运算,将每次点成的结果进行累加得到y(t)对应元素的值(公式-1)。 

公式-1

 宏观效果(图-6):

图-6

实例

以不同的 h(t) 进行卷积操作,会获取到不同的特征:

锐化(图-7):

图-7

 模糊处理(图-8):

图-8

 边缘检测(图-9):

图-9

卷积神经网络

 图-3 是以1个Kernel_channel进行卷积运算。以多个Kernel_channels进行卷积运算(图-10):

图-10

假设原来的图像是一个28*28的灰度图像,即[1, 28, 28]。使用3*3的特征矩阵以7个角度来观察这副图像,最后得到的卷积层是[7, 26, 26]。

称呼声明:

Input_channels :输入的图像的通道,彩色图像就是3,灰度图像就是1

Kernel_channels: 以多少个视角来观察图像

Kernel_size : 特征矩阵的size

Stride: 每次向下/左移动的步长

Padding: 空白的数量,补0

实例(图-11),注意右下角的标注,每个圈中的值必须相等。将同一视角不同通道得出来的矩阵进行叠加,最后会得到一个高维的特性。卷积的过程叫做特征提取。 

图-11

输出图像的大小计算(公式-2):

公式-2

代码示例:

# 1、
x=torch.rand(1,1,28,28)  #[b,c,h,w]
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=0) # weight [3,1,3,3],不补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 26, 26])# 2、
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])# 3、
layer=nn.Conv2d(1,3,kernel_size=3,stride=2,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])# 说明:
#现在基本不用layer.forward,而是用layer
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 14, 14])###### inner weight $ bias #########
#直接调用
print(layer.weight)
# Parameter containing:
# tensor([[[[-0.1249, -0.3302, -0.1774],
#           [-0.1542,  0.0873,  0.0282],
#           [-0.0006, -0.1798, -0.1030]]],
#
#
#         [[[ 0.1932,  0.3240,  0.1747],
#           [-0.2188, -0.1775, -0.0652],
#           [-0.1455, -0.1220,  0.0629]]],
#
#
#         [[[ 0.2596,  0.3017,  0.2028],
#           [-0.2629, -0.0715,  0.3267],
#           [ 0.3174, -0.1441, -0.1714]]]], requires_grad=True)print(layer.weight.shape)
# torch.Size([3, 1, 3, 3])print(layer.bias.shape)
# torch.Size([3])

向上/向下采样

最大采样,选取最大的(图-12):

图-12

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])layer=nn.MaxPool2d(2,stride=2) #最大池化,2*2的滑动窗口,步长为2
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 7, 7])

平均采样,选择平均值(图-13):

图-13

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])out=F.avg_pool2d(x,2,stride=2) #平均池化,2*2的滑动窗口,步长为2
print(out.shape)
#torch.Size([1, 3, 7, 7])

上采样,选取最邻近的(图-14):

扩展到卷积层呢?以一个5层的卷积层为例,进行分析:

 代码演示:

x=out
print(out.shape)
# torch.Size([1, 3, 7, 7])
out=F.interpolate(x,scale_factor=2,mode='nearest')# 为放大倍数
print(out.shape) 
# torch.Size([1, 3, 14, 14])
out=F.interpolate(x,scale_factor=3,mode='nearest')
print(out.shape)
# torch.Size([1, 3, 21, 21])

 扩展到卷积层

图-16

1、输入是一个32*32的灰度图像[1, 32, 32],使用一个3*3的特征矩阵进行卷积,分别从6个角度进行卷积,步长为1,会得到一个[6,1,28,28]的图像
2、上采样-》[6,1,14,14]
3、卷积-》[16,1,10,10]
4、上采样-》[16,1,5,5]
5、全连接
6、全连接
7、高斯分布

ReLU

图-17

 代码演示:

#两种方式,一种是nn.ReLU,另一种是F.relu
x=out
print(x.shape)
#torch.Size([1, 3, 7, 7])layer=nn.ReLU(inplace=True)
out=layer(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])#与上面三行等价
out=F.relu(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])#relu激活函数并不改变size大小

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/778172.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重写、重定义(隐藏)、重载区别

1、重载是在同一个作用域中比如在同一个类中、函数名一样参数不同 2、重写: 满足多态的条件:(1)虚函数前面带有virtual函数名、返回值、参数相同(2)重写函数体 3、重定义也叫隐藏、不满足重写的就是重定义

SlerfTools:简化操作,激发Solana生态创新潜能

在区块链世界的快速演变中,Solana生态系统以其独特的高性能吸引了全球的目光。然而,随着生态系统的蓬勃发展,用户和开发者面临的挑战也日渐增多。正是在这样的背景下,一个名为SlerfTools的新星项目应运而生,它承诺将为Solana带来一场革命性的变革。 项目的诞生 SlerfTools并非…

前端学习-CSS基础-Day3

一、CSS三大特性 1.1层叠性 相同选择器给设置相同的样式,此时一个样式就会覆盖(层叠)另一个冲突的样式。层叠性主要解决样式冲突的问题 层叠性原则: 1.样式冲突,遵循的原则是就近原则,哪个样式离结构近&a…

【QT+QGIS跨平台编译】043:【libprotobuf-lite+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

点击查看专栏目录 文章目录 一、libprotobuf-lite介绍二、文件下载三、文件分析四、pro文件五、编译实践一、libprotobuf-lite介绍 libprotobuf-lite 是 Protocol Buffers 的 C++ 轻量级运行时库,专门设计用于在资源受限的环境下使用。与标准的 libprotobuf(Protocol Buffers…

数据结构——AVL树详解

一、AVL树的定义 AVL全称叫做平衡二叉搜索(搜索)树,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年发明了一种方法: 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超…

halcon例程学习——ball.hdev

dev_update_window (off) dev_close_window () dev_open_window (0, 0, 728, 512, black, WindowID) read_image (Bond, die/die_03) dev_display (Bond) set_display_font (WindowID, 14, mono, true, false) *自带的 提示继续 disp_continue_message (WindowID, black, true)…

目标检测的相关模型图:YOLO系列和RCNN系列

目标检测的相关模型图:YOLO系列和RCNN系列 前言YOLO系列的图展示YOLOpassthroughYOLO2YOLO3YOLO4YOLO5 RCNN系列的图展示有关目标检测发展的 前言 最近好像大家也都在写毕业论文,前段时间跟朋友聊天,突然想起自己之前写画了一些关于YOLO、Fa…

货币系统(闫氏DP分析法)

题目描述: 给定 V 种货币(单位:元),每种货币使用的次数不限。 不同种类的货币,面值可能是相同的。 现在,要你用这 V 种货币凑出 N 元钱,请问共有多少种不同的凑法。 输入格式&am…

C语言 C6031:返回值被忽略:“scanf“ 问题解决

我们在代码中 直接使用 scanf 就会出现这个错误 在最上面 加上 #define _CRT_SECURE_NO_WARNINGS//禁用安全函数警告 #pragma warning(disable:6031)//禁用 6031 的安全警告即可正常运行

llama-index 结合chatglm3-6B 利用RAG 基于文档智能问答

简介 llamaindex结合chatglm3使用 import os import torch from llama_index.core import VectorStoreIndex, ServiceContext from llama_index.core.callbacks import CallbackManager from llama_index.core.llms.callbacks import llm_completion_callback from llama_ind…

登录拦截器

目录 🎈1.登陆拦截器的使用 🎊2.ThreadLocal的简单使用 🎃3.登录拦截器拦截和放行配置 1.登陆拦截器的使用 创建一个拦截器类,必须让其实现HandlerInterceptor接口 1.获取前端的token 2.判断token是否为空 3.若为空&#xff…

自动发卡平台源码优化版,支持个人免签支付

源码下载地址:自动发卡平台源码优化版.zip 环境要求: php 8.0 v1.2.6◂ 1.修复店铺共享连接时异常问题 2024-03-13 23:54:20 v1.2.5 1.[新增]用户界面硬币增款扣款操作 2.[新增]前台对接库存信息显示 3.[新增]文件缓存工具类[FileCache] 4.[新增]库存同…

通讯控制板V1.2版本

通讯控制板硬件需求说明书 硬件组成 下图借鉴参考野火图纸 0. CAN接口 硬件需求 板载支持CAN通讯接口 CAN引脚功能PA12CAN_TXPA11CAN_RX 1. RS485接口 硬件需求 板载支持RS485通讯接口 RS485引脚功能PB10RS485_TXPB11RS485_RXPB12RS485_RE/DE 2. RS232接口 硬件需求 板…

C/C++ ③ —— C++11新特性

1. 类型推导 1.1 auto auto可以让编译器在编译期就推导出变量的类型 auto的使⽤必须⻢上初始化,否则⽆法推导出类型auto在⼀⾏定义多个变量时,各个变量的推导不能产⽣⼆义性,否则编译失败auto不能⽤作函数参数在类中auto不能⽤作⾮静态成员…

【IP 组播】PIM-SM

目录 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-SM 4.用户端DR与组播源端DR 5.从RPT切换到SPT 6.配置PIM-Silent接口 原理概述 PIM-SM 是一种基于Group-Shared Tree 的组播路由协议,与 PIM-DM 不同,它适合于组播组成…

javaScript | 报错:JSX expressions must have one parent element

#错误记录:在做一个练习时候出现这个错误 #错误原因分析:在React和JSX中,每个JSX表达式都必须有一个父元素。这意味着你想要渲染的所有组件或元素都必须被一个单独的容器所包含。这个规则的原因是JSX最终会被编译成调用React.createElement()…

分享react+three.js展示温湿度采集终端

前言 气象站将采集到的相关气象数据通过GPRS/3G/4G无线网络发送到气象站监测中心,摆脱了地理空间的限制。 前端:气象站主机将采集好的气象数据存储到本地,通过RS485等线路与GPRS/3G/4G无线设备相连。 通信:GPRS/3G/4G无线设备通…

真北3月小结:15小时黄金定律

我以前是敏捷爱好者,现在是跑步爱好者,希望将来能成为赚钱爱好者。我们跑步,我们读书,我们写作,都是为了获得#高配人生。15小时黄金定律是指:每月跑步15小时、每月读书15小时、每月写作15小时。 1、跑步 跑…

系统架构图怎么画

画架构图是架构师的一门必修功课。 对于架构图是什么这个问题,我们可以按以下等式进行概括: 架构图 架构的表达 架构在不同抽象角度和不同抽象层次的表达,这是一个自然而然的过程。 不是先有图再有业务流程、系统设计和领域模型等&#…

【C语言】预处理常见知识详解(宏详解)

文章目录 1、预定义符号2、define2.1 define 定义常量2.2 define 定义宏 3、#和##3.1 **#**3.2 **##** 4、条件编译(开关) 1、预定义符号 在C语言中内置了一些预定义符号,可以直接使用,这些符号实在预处理期间处理的,…