TSL四次握手

HTTPS 常用的密钥交换算法有两种,分别是 RSA 和 ECDHE 算法。
其中,RSA 是比较传统的密钥交换算法,它不具备前向安全的性质,因此现在很少服务器使用的。而 ECDHE 算法具有前向安全,所以被广泛使用。

1. ECDHE算法

1.1 离散对数

ECDHE 密钥协商算法是 DH 算法演进过来的,所以我们先从 DH 算法说起。
DH 算法是非对称加密算法, 因此它可以用于密钥交换,该算法的核心数学思想是离散对数。
是不是听到这个数学概念就怂了?不怕,这次不会说离散对数推到的过程,只简单提一下它的数学公式。
离散对数是「离散 + 对数」的两个数学概念的组合,所以我们先来复习一遍对数。
要说起对数,必然要说指数,因为它们是互为反函数,指数就是幂运算,对数是指数的逆运算。
举个栗子,如果以 2 作为底数,那么指数和对数运算公式,如下图所示:
在这里插入图片描述
那么对于底数为 2 的时候, 32 的对数是 5,64 的对数是 6,计算过程如下:
在这里插入图片描述
对数运算的取值是可以连续的,而离散对数的取值是不能连续的,因此也以「离散」得名,
离散对数是在对数运算的基础上加了「模运算」,也就说取余数,对应编程语言的操作符是「%」,也可以用 mod 表示。离散对数的概念如下图:
在这里插入图片描述
上图的,底数 a 和模数 p 是离散对数的公共参数,也就说是公开的,b 是真数,i 是对数。知道了对数,就可以用上面的公式计算出真数。但反过来,知道真数却很难推算出对数。
特别是当模数 p 是一个很大的质数,即使知道底数 a 和真数 b ,在现有的计算机的计算水平是几乎无法算出离散对数的,这就是 DH 算法的数学基础。

1.2 DH 算法

认识了离散对数,我们来看看 DH 算法是如何密钥交换的。
现假设小红和小明约定使用 DH 算法来交换密钥,那么基于离散对数,小红和小明需要先确定模数和底数作为算法的参数,这两个参数是公开的,用 P 和 G 来代称。
然后小红和小明各自生成一个随机整数作为私钥,双方的私钥要各自严格保管,不能泄漏,小红的私钥用 a 代称,小明的私钥用 b 代称。
现在小红和小明双方都有了 P 和 G 以及各自的私钥,于是就可以计算出公钥:
● 小红的公钥记作 A,A = G ^ a ( mod P );
● 小明的公钥记作 B,B = G ^ b ( mod P );
A 和 B 也是公开的,因为根据离散对数的原理,从真数(A 和 B)反向计算对数 a 和 b 是非常困难的,至少在现有计算机的计算能力是无法破解的,如果量子计算机出来了,那就有可能被破解,当然如果量子计算机真的出来了,那么密钥协商算法就要做大的升级了。
双方交换各自 DH 公钥后,小红手上共有 5 个数:P、G、a、A、B,小明手上也同样共有 5 个数:P、G、b、B、A。
然后小红执行运算: B ^ a ( mod P ),其结果为 K,因为离散对数的幂运算有交换律,所以小明执行运算: A ^ b ( mod P ),得到的结果也是 K。
在这里插入图片描述
这个 K 就是小红和小明之间用的对称加密密钥,可以作为会话密钥使用。
可以看到,整个密钥协商过程中,小红和小明公开了 4 个信息:P、G、A、B,其中 P、G 是算法的参数,A 和 B 是公钥,而 a、b 是双方各自保管的私钥,黑客无法获取这 2 个私钥,因此黑客只能从公开的 P、G、A、B 入手,计算出离散对数(私钥)。
前面也多次强调, 根据离散对数的原理,如果 P 是一个大数,在现有的计算机的计算能力是很难破解出 私钥 a、b 的,破解不出私钥,也就无法计算出会话密钥,因此 DH 密钥交换是安全的。

1.3 DHE 算法

根据私钥生成的方式,DH 算法分为两种实现:
● static DH 算法,这个是已经被废弃了;
● DHE 算法,现在常用的;
static DH 算法里有一方的私钥是静态的,也就说每次密钥协商的时候有一方的私钥都是一样的,一般是服务器方固定,即 a 不变,客户端的私钥则是随机生成的。
于是,DH 交换密钥时就只有客户端的公钥是变化,而服务端公钥是不变的,那么随着时间延长,黑客就会截获海量的密钥协商过程的数据,因为密钥协商的过程有些数据是公开的,黑客就可以依据这些数据暴力破解出服务器的私钥,然后就可以计算出会话密钥了,于是之前截获的加密数据会被破解,所以 static DH 算法不具备前向安全性。
既然固定一方的私钥有被破解的风险,那么干脆就让双方的私钥在每次密钥交换通信时,都是随机生成的、临时的,这个方式也就是 DHE 算法,E 全称是 ephemeral(临时性的)。
所以,即使有个牛逼的黑客破解了某一次通信过程的私钥,其他通信过程的私钥仍然是安全的,因为每个通信过程的私钥都是没有任何关系的,都是独立的,这样就保证了「前向安全」。

1.4 ECDHE 算法

DHE 算法由于计算性能不佳,因为需要做大量的乘法,为了提升 DHE 算法的性能,所以就出现了现在广泛用于密钥交换算法 —— ECDHE 算法。
ECDHE 算法是在 DHE 算法的基础上利用了 ECC 椭圆曲线特性,可以用更少的计算量计算出公钥,以及最终的会话密钥。
小红和小明使用 ECDHE 密钥交换算法的过程:
● 双方事先确定好使用哪种椭圆曲线,和曲线上的基点 G,这两个参数都是公开的;
● 双方各自随机生成一个随机数作为私钥d,并与基点 G相乘得到公钥Q(Q = dG),此时小红的公私钥为 Q1 和 d1,小明的公私钥为 Q2 和 d2;
● 双方交换各自的公钥,最后小红计算点(x1,y1) = d1Q2,小明计算点(x2,y2) = d2Q1,由于椭圆曲线上是可以满足乘法交换和结合律,所以 d1Q2 = d1d2G = d2d1G = d2Q1 ,因此双方的 x 坐标是一样的,所以它是共享密钥,也就是会话密钥。
这个过程中,双方的私钥都是随机、临时生成的,都是不公开的,即使根据公开的信息(椭圆曲线、公钥、基点 G)也是很难计算出椭圆曲线上的离散对数(私钥)。

2. ECDHE握手过程

2.1 Cipher Suite Negotiation in TLS V.1.2

In the first step, what’s often called the “client hello”, the client initiates communication and shows the server the supported cipher suites. In response, the server sends its SSL/TLS certificate over and picks its preferred ciphers from the list. It’ll then use that info to establish secure communications with the client (i.e., server hello).
What does a cipher suite look like? In TLS 1.2, every cipher suite is composed of four distinguished parts. Let’s take a common one as an example and analyze it bit by bit.
在这里插入图片描述
Image caption: An example graphic that breaks down the individual elements that comprise a cipher suite.
● Key exchange/generation algorithm. ECDHE or elliptic curve Diffie Hellman ephemeral, is an example of an algorithm the client and server will use to generate a symmetric encryption key. Other examples of key exchange algorithms include RSA, Diffie-Hellman (DH), and elliptic curve Diffie-Hellman (ECDH). We’ll learn more about those in a moment.
● Authentication/digital signature algorithm. ECDSA, or elliptic curve digital signature algorithm, is utilized by the server to create a digital signature. How? By encrypting two randoms and its pre-master secret with its private key. The client will then use the public key to verify the signature and authenticate the server. It’s a variant of the digital signature algorithm (DSA). Its key features? It’s more secure than RSA and, thanks to its shorter keys, it has a better performance.
● Data encryption/decryption ciphers. AES128-GCM, or advanced encryption standard in Galois counter mode (GCM), is a block cipher that’s used to encrypt and decrypt the data transmitted in blocks of a pre-determined size. Among other bulk ciphers we can find CHACHA20_and POLY1305, stream ciphers encrypting data bite by bite in a linear way, and older block ciphers like DES, Triple DES, and RC4.
● Data integrity/authentication. SHA256, also called secure hashing algorithm 256, creates a 256-bit digest (i.e., the fixed size value representing the content of the hashed message). It’s the method used to identify tampering or errors during data transmission and authenticate the message. SHA-256 is recommended and approved by the National Institute of Standards and Technology (NIST). Other TLS 1.2 hashing algorithms used include MD5 and SHA-1 (both deprecated) and the more recent SHA-384.

知道了 ECDHE 算法基本原理后,我们就结合实际的情况来看看。
我用 Wireshark 工具抓了用 ECDHE 密钥协商算法的 TSL 握手过程,可以看到是四次握手:
在这里插入图片描述
细心的小伙伴应该发现了,使用了 ECDHE,在 TLS 第四次握手前,客户端就已经发送了加密的 HTTP 数据,而对于 RSA 握手过程,必须要完成 TLS 四次握手,才能传输应用数据。
所以,ECDHE 相比 RSA 握手过程省去了一个消息往返的时间,这个有点「抢跑」的意思,它被称为是「TLS False Start」,跟「TCP Fast Open」有点像,都是在还没连接完全建立前,就发送了应用数据,这样便提高了传输的效率。
接下来,分析每一个 ECDHE 握手过程。

2.2 TLS 第一次握手

客户端首先会发一个「Client Hello」消息,消息里面有客户端使用的 TLS 版本号、支持的密码套件列表,以及生成的随机数(Client Random)。
在这里插入图片描述

2.3 TLS 第二次握手

服务端收到客户端的「打招呼」,同样也要回礼,会返回「Server Hello」消息,消息面有服务器确认的 TLS 版本号,也给出了一个随机数(Server Random),然后从客户端的密码套件列表选择了一个合适的密码套件。
在这里插入图片描述
不过,这次选择的密码套件就和 RSA 不一样了,我们来分析一下这次的密码套件的意思。
「 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384」
● 密钥协商算法使用 ECDHE;
● 签名算法使用 RSA;
● 握手后的通信使用 AES 对称算法,密钥长度 256 位,分组模式是 GCM;
● 摘要算法使用 SHA384;
接着,服务端为了证明自己的身份,发送「Certificate」消息,会把证书也发给客户端。
在这里插入图片描述
这一步就和 RSA 握手过程有很大到区别了,因为服务端选择了 ECDHE 密钥协商算法,所以会在发送完证书后,发送「Server Key Exchange」消息。
在这里插入图片描述
这个过程服务器做了三件事:
● 选择了名为 named_curve 的椭圆曲线,选好了椭圆曲线相当于椭圆曲线基点 G 也定好了,这些都会公开给客户端;
● 生成随机数作为服务端椭圆曲线的私钥,保留到本地;
● 根据基点 G 和私钥计算出服务端的椭圆曲线公钥,这个会公开给客户端。
为了保证这个椭圆曲线的公钥不被第三方篡改,服务端会用 RSA 签名算法给服务端的椭圆曲线公钥做个签名。
随后,就是「Server Hello Done」消息,服务端跟客户端表明:“这些就是我提供的信息,打招呼完毕”。
在这里插入图片描述
至此,TLS 两次握手就已经完成了,目前客户端和服务端通过明文共享了这几个信息:Client Random、Server Random 、使用的椭圆曲线、椭圆曲线基点 G、服务端椭圆曲线的公钥,这几个信息很重要,是后续生成会话密钥的材料。

2.4 TLS 第三次握手

客户端收到了服务端的证书后,自然要校验证书是否合法,如果证书合法,那么服务端到身份就是没问题的。校验证书到过程,会走证书链逐级验证,确认证书的真实性,再用证书的公钥验证签名,这样就能确认服务端的身份了,确认无误后,就可以继续往下走。
客户端会生成一个随机数作为客户端椭圆曲线的私钥,然后再根据服务端前面给的信息,生成客户端的椭圆曲线公钥,然后用「Client Key Exchange」消息发给服务端。
在这里插入图片描述
至此,双方都有对方的椭圆曲线公钥、自己的椭圆曲线私钥、椭圆曲线基点 G。于是,双方都就计算出点(x,y),其中 x 坐标值双方都是一样的,前面说 ECDHE 算法时候,说 x 是会话密钥,但实际应用中,x 还不是最终的会话密钥。
还记得 TLS 握手阶段,客户端和服务端都会生成了一个随机数传递给对方吗?
最终的会话密钥,就是用「客户端随机数 + 服务端随机数 + x(ECDHE 算法算出的共享密钥) 」三个材料生成的。
之所以这么麻烦,是因为 TLS 设计者不信任客户端或服务器「伪随机数」的可靠性,为了保证真正的完全随机,把三个不可靠的随机数混合起来,那么「随机」的程度就非常高了,足够让黑客计算出最终的会话密钥,安全性更高。
算好会话密钥后,客户端会发一个「Change Cipher Spec」消息,告诉服务端后续改用对称算法加密通信。
在这里插入图片描述
接着,客户端会发「Encrypted Handshake Message」消息,把之前发送的数据做一个摘要,再用对称密钥加密一下,让服务端做个验证,验证下本次生成的对称密钥是否可以正常使用。
在这里插入图片描述

2.5 TLS 第四次握手

最后,服务端也会有一个同样的操作,发「Change Cipher Spec」和「Encrypted Handshake Message」消息,如果双方都验证加密和解密没问题,那么握手正式完成。于是,就可以正常收发加密的 HTTP 请求和响应了。

3. 总结

RSA 和 ECDHE 握手过程的区别:
● RSA 密钥协商算法「不支持」前向保密,ECDHE 密钥协商算法「支持」前向保密;
● 使用了 RSA 密钥协商算法,TLS 完成四次握手后,才能进行应用数据传输,而对于 ECDHE 算法,客户端可以不用等服务端的最后一次 TLS 握手,就可以提前发出加密的 HTTP 数据,节省了一个消息的往返时间;
● 使用 ECDHE, 在 TLS 第 2 次握手中,会出现服务器端发出的「Server Key Exchange」消息,而 RSA 握手过程没有该消息;
巨人的肩膀

  1. https://zh.wikipedia.org/wiki/橢圓曲線迪菲-赫爾曼金鑰交換
  2. https://zh.wikipedia.org/wiki/椭圆曲线
  3. https://zh.wikipedia.org/wiki/迪菲-赫爾曼密鑰交換
  4. https://time.geekbang.org/column/article/148188
  5. https://zhuanlan.zhihu.com/p/106967180
  6. https://cheapsslsecurity.com/blog/what-is-tls-1-2-a-look-at-the-secure-protocol/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/699308.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PostgreSQL如何使用UUID

离线安装时,一般有四个包,都安装的话,只需要开启uuid的使用即可,如果工具包(即 postgresql11-contrib)没有安装的话,需要单独安装一次,再进行开启。 开启UUID方法 下面介绍一下如何开启&#…

ELK介绍以及搭建

基础环境 hostnamectl set-hostname els01 hostnamectl set-hostname els02 hostnamectl set-hostname els03 hostnamectl set-hostname kbased -i s/SELINUXenforcing/SELINUXdisabled/ /etc/selinux/config systemctl stop firewalld & systemctl disable firewalld# 安…

互联设备-中继器-路由器等

网卡的主要作用 1 在发送方 把从计算机系统要发送的数据转换成能在网线上传输的bit 流 。 2 在接收方 把从网线上接收来的 bit 流重组成计算机系统可以 处理的数据 。 3 判断数据是否是发给自己的 4 发送和控制计算机系统和网线数据流 计算机的分类 1、台式机 2、小型机和服…

亿道丨三防平板丨加固平板丨为零售业提供四大优势

随着全球经济的快速发展,作为传统行业的零售业也迎来了绝佳的发展机遇,在互联网智能化的大环境下,越来越多的零售企业选择三防平板电脑作为工作中的电子设备。作为一种耐用的移动选项,三防平板带来的不仅仅是坚固的外壳。坚固耐用…

计算机网络面经-从浏览器地址栏输入 url 到显示主页的过程?

大概的过程比较简单,但是有很多点可以细挖:DNS解析、TCP三次握手、HTTP报文格式、TCP四次挥手等等。 DNS 解析:将域名解析成对应的 IP 地址。TCP连接:与服务器通过三次握手,建立 TCP 连接向服务器发送 HTTP 请求服务器…

模型 KISS复盘法

系列文章 分享 模型,了解更多👉 模型_总纲目录。重在提升认知。反思过去,不断进步。 1 KISS复盘法的应用 1.1 团队项目复盘 在一个团队项目结束后,团队成员可以使用KISS模型进行复盘,以总结经验教训并改进未来的工作…

Web3之光:揭秘数字创新的未来

随着数字化时代的深入发展,Web3正以其独特的技术和理念,为我们打开数字创新的崭新视角。作为数字化时代的新兴力量,Web3将深刻影响着我们的生活、工作和社会。本文将揭秘Web3的奥秘,探讨其在数字创新领域的前景和潜力。 1. 重新定…

HTTP 与 HTTPS-HTTP 解决了 HTTP 哪些问题?

资料来源 : 小林coding 小林官方网站 : 小林coding (xiaolincoding.com) HTTP 解决了 HTTP 哪些问题? HTTP 由于是明文传输,所以安全上存在以下三个风险: 窃听风险,比如通信链路上可以获取通信内容,用户号容易没。篡改风险,比如…

Spark: a little summary

转眼写spark一年半了,从之前写机器学习组件、做olap到后面做图计算,一直都是用的spark,惭愧的是没太看过里面的源码。这篇文章的目的是总结一下Spark里面比较重要的point,重点部分会稍微看一下源代码,因为spark是跟cli…

(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程

相似对角化 和 对角化 很大程度上是一回事 甚至判断两个矩阵的相似性,也跟对角化有很大关系 参考视频1:https://www.bilibili.com/video/BV1PA411T7b5/?spm_id_from333.788&vd_source7a1a0bc74158c6993c7355c5490fc600 参考视频2:http…

在 Jupyter Notebook 中查看所使用的 Python 版本和 Python 解释器路径

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 我们在做 Python 开发时,有时在我们的服务器上可能安装了多个 Python 版本。 使用 conda info --envs 可以列出所有的 conda 环境。当在 Linux 服务器上使用 which python 命令时&#xff0…

解决IDEA中Maven下载依赖包过慢或报错的问题

由于公司项目迭代,越来越多的项目开始转型新版本,由于我对Java一直不感冒,但要顺应公司项目要求,遂自己要逐步开始完善Java相关的知识层面,此篇是我在学习SpringBoot时对一些不懂地方及遇到问题时的记录。 学习视频链…

ChatGPT plus 的平替:9个可以联网的免费AI搜索引擎

ChatGPT plus 的平替:9个可以联网的免费AI搜索引擎。 由于ChatGPT 训练数据截止到2021年9月,在该时间点之后发生的事件,ChatGPT均无法给出答复。所以,大家现在都非常期待ChatGPT能够联网,访问实时的信息。 ChatGPT pl…

详解编译和链接!

目录 1. 翻译环境和运行环境 2. 翻译环境 2.1 预处理 2.2 编译 2.3 汇编 2.4 链接 3. 运行环境 4.完结散花 悟已往之不谏,知来者犹可追 创作不易,宝子们!如果这篇文章对你们…

如何用壁纸讲述你的墙故事?

1、方小童在线工具集 网址: 方小童 该网站是一款在线工具集合的网站,目前包含PDF文件在线转换、随机生成美女图片、精美壁纸、电子书搜索等功能,喜欢的可以赶紧去试试!

Linux Android USB gadget(从设备驱动)

Linux Android USB gadget 一:Linux usb gadget 与 Android Composite Gadget二:原生方式和Android方式如何配置函数调用逻辑内核配置原生驱动android驱动三:mass_storage配置虚拟化U盘四:遍历usb设备五:adb usb判断usb设备为adb获取adb配置信息adb设备序列号发送与接收《Linux…

linux服务器tomcat日志中文出现问号乱码

目录 一、场景二、排查三、原因四、解决 一、场景 tomcat日志的中文出现问号乱码 乱码示例 ??[377995738417729536]????????? ac??????????????message:二、排查 1、使用locale命令查看服务器当前使用的语言包 发现只用的语言包为utf-8&#xff0…

2001~2023年中国MOD17A3HGF NPP数据

各位同学们好&#xff0c;今天和大伙儿分享的是2001~2023年中国MOD17A3HGF NPP数据。如果大家有下载处理数据等方面的问题&#xff0c;请私信或评论。 Running, S., M. Zhao. <i>MODIS/Terra Net Primary Production Gap-Filled Yearly L4 Global 500m SIN Grid V061<…

ACM题解Day6 | 质数素数模块 | 完数难题

学习目标&#xff1a; 博主介绍: 27dCnc 专题 : 数据结构帮助小白快速入门算法 &#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d;&#x1f44d; ☆*: .&#xff61;. o(≧▽…

(十八)devops持续集成开发——使用docker安装部署jenkins流水线服务

前言 本节内容介绍如何使用docker容器来部署安装jenkins流水线服务。关于docker容器的安装本节内容不做介绍。请读者提前安装。 正文 ①使用docker查找jenkins官方镜像 ② 拉取jenkins官方镜像jenkins/jenkins&#xff0c;选择一个最新稳定版本&#xff0c;避免一些插件不兼…