前言
首先说一下延迟队列这个东西,实际上实现他的方法有很多,kafka实现并不是一个最好的选择,例如redis的zset可以实现,rocketmq天然的可以实现,rabbitmq也可以实现。如果切换前几种方案成本高的情况下,那么就使用kafka实现,实际上kafka实现延迟队列也是借用了rocketmq的延迟队列思想,rocketmq的延迟时间是固定的几个,并不是自定义的,但是kafka可以实现自定义的延迟时间,但是不能过多,因为是依据topic实现的,接下来我使用go实现简单的kafka的延迟队列。
实现方案
1、首先创建两个topic、一个delayTopic、一个realTopic
2、生产者把消息先发送到delayTopic
3、延迟服务再把delayTopic里面的消息超过我们所设置的时间写入到realTopic
4、消费者再消费realTopic里面的数据即可
具体实现
1、生产者发送消息到延迟队列
msg := &sarama.ProducerMessage{Topic: kafka.DelayTopic,Timestamp: time.Now(),Key: sarama.StringEncoder("rta_key"),Value: sarama.StringEncoder(riStr),}partition, offset, err := kafka.KafkaDelayQueue.SendMessage(msg)
2、延迟服务的消费者(消费延迟队列里面的数据到real队列)
const (DelayTime = time.Minute * 5DelayTopic = "delayTopic"RealTopic = "realTopic"
)// KafkaDelayQueueProducer 延迟队列生产者,包含了生产者和延迟服务
type KafkaDelayQueueProducer struct {producer sarama.SyncProducer // 生产者delayTopic string // 延迟服务主题
}// NewKafkaDelayQueueProducer 创建延迟队列生产者
// producer 生产者
// delayServiceConsumerGroup 延迟服务消费者组
// delayTime 延迟时间
// delayTopic 延迟服务主题
// realTopic 真实队列主题
func NewKafkaDelayQueueProducer(producer sarama.SyncProducer, delayServiceConsumerGroup sarama.ConsumerGroup,delayTime time.Duration, delayTopic, realTopic string, log *log) *KafkaDelayQueueProducer {var (signals = make(chan os.Signal, 1))signal.Notify(signals, syscall.SIGTERM, syscall.SIGINT, os.Interrupt)// 启动延迟服务consumer := NewDelayServiceConsumer(producer, delayTime, realTopic, log)log.Info("[NewKafkaDelayQueueProducer] delay queue consumer start")go func() {for {if err := delayServiceConsumerGroup.Consume(context.Background(),[]string{delayTopic}, consumer); err != nil {log.Error("[NewKafkaDelayQueueProducer] delay queue consumer failed,err: ", zap.Error(err))break}time.Sleep(2 * time.Second)log.Info("[NewKafkaDelayQueueProducer] 检测消费函数是否一直执行")// 检查是否接收到中断信号,如果是则退出循环select {case sin := <-signals:consumer.Logger.Info("[NewKafkaDelayQueueProducer]get signal,", zap.Any("signal", sin))returndefault:}}log.Info("[NewKafkaDelayQueueProducer] consumer func exit")}()log.Info("[NewKafkaDelayQueueProducer] return KafkaDelayQueueProducer")return &KafkaDelayQueueProducer{producer: producer,delayTopic: delayTopic,}
}// SendMessage 发送消息
func (q *KafkaDelayQueueProducer) SendMessage(msg *sarama.ProducerMessage) (partition int32, offset int64, err error) {msg.Topic = q.delayTopicreturn q.producer.SendMessage(msg)
}// DelayServiceConsumer 延迟服务消费者
type DelayServiceConsumer struct {producer sarama.SyncProducerdelay time.DurationrealTopic stringLogger *log.DomobLog
}func NewDelayServiceConsumer(producer sarama.SyncProducer, delay time.Duration,realTopic string, log *log.DomobLog) *DelayServiceConsumer {return &DelayServiceConsumer{producer: producer,delay: delay,realTopic: realTopic,Logger: log,}
}func (c *DelayServiceConsumer) ConsumeClaim(session sarama.ConsumerGroupSession,claim sarama.ConsumerGroupClaim) error {c.Logger.Info("[delaye ConsumerClaim] cc")for message := range claim.Messages() {// 如果消息已经超时,把消息发送到真实队列now := time.Now()c.Logger.Info("[delay ConsumeClaim] out",zap.Any("send real topic res", now.Sub(message.Timestamp) >= c.delay),zap.Any("message.Timestamp", message.Timestamp),zap.Any("c.delay", c.delay),zap.Any("claim.Messages len", len(claim.Messages())),zap.Any("sub:", now.Sub(message.Timestamp)),zap.Any("meskey:", message.Key),zap.Any("message:", string(message.Value)),)if now.Sub(message.Timestamp) >= c.delay {c.Logger.Info("[delay ConsumeClaim] jinlai", zap.Any("mes", string(message.Value)))_, _, err := c.producer.SendMessage(&sarama.ProducerMessage{Topic: c.realTopic,Timestamp: message.Timestamp,Key: sarama.ByteEncoder(message.Key),Value: sarama.ByteEncoder(message.Value),})if err != nil {c.Logger.Info("[delay ConsumeClaim] delay already send to real topic failed", zap.Error(err))return nil}if err == nil {session.MarkMessage(message, "")c.Logger.Info("[delay ConsumeClaim] delay already send to real topic success")continue}}// 否则休眠一秒time.Sleep(time.Second)return nil}c.Logger.Info("[delay ConsumeClaim] ph",zap.Any("partitiion", claim.Partition()),zap.Any("HighWaterMarkOffset", claim.HighWaterMarkOffset()))c.Logger.Info("[delay ConsumeClaim] delay consumer end")return nil
}func (c *DelayServiceConsumer) Setup(sarama.ConsumerGroupSession) error {return nil
}func (c *DelayServiceConsumer) Cleanup(sarama.ConsumerGroupSession) error {return nil
}
这个方法整体逻辑就是不断消费延迟队列里面的消息,判断消息时间是否大于现在,如果大于现在说明消息超时了,就把该消息发送到真实的队列里面去了,真实队列是一直在消费的。如果没超时的话就不会标记消息,还会重新消费,消费成功会标记该消息。
重点:我在测试的时候是一秒拉一次消息,但这个也不是太准时,不过最终结果差距不大,想知道具体怎么消费的可以自己debug
3、真实队列里面的消费逻辑
type ConsumerRta struct {Logger *log
}func ConsumerToRequestRta(consumerGroup sarama.ConsumerGroup, lg *log) {var (signals = make(chan os.Signal, 1)wg = &sync.WaitGroup{})signal.Notify(signals, syscall.SIGTERM, syscall.SIGINT, os.Interrupt)wg.Add(1)// 启动消费者协程go func() {defer wg.Done()consumer := NewConsumerRta(lg)consumer.Logger.Info("[ConsumerToRequestRta] consumer group start")// 执行消费者组消费for {if err := consumerGroup.Consume(context.Background(), []string{kafka.RealTopic}, consumer); err != nil {consumer.Logger.Error("[ConsumerToRequestRta] Error from consumer group:", zap.Error(err))break}time.Sleep(2 * time.Second) // 等待一段时间后重试// 检查是否接收到中断信号,如果是则退出循环select {case sin := <-signals:consumer.Logger.Info("get signal,", zap.Any("signal", sin))returndefault:}}}()wg.Wait()lg.Info("[ConsumerToRequestRta] consumer end & exit")
}func NewConsumerRta(lg *log) *ConsumerRta {return &ConsumerRta{Logger: lg,}
}func (c *ConsumerRta) ConsumeClaim(session sarama.ConsumerGroupSession,claim sarama.ConsumerGroupClaim) error {for message := range claim.Messages() {// 消费逻辑session.MarkMessage(message, "")return nil}return nil
}func (c *ConsumerRta) Setup(sarama.ConsumerGroupSession) error {return nil
}func (c *ConsumerRta) Cleanup(sarama.ConsumerGroupSession) error {return nil
}
4、kafka配置
type KafkaConfig struct {BrokerList []stringTopic []stringGroupId []stringCfg *sarama.ConfigPemPath stringKeyPath stringCaPemPath string
}var (Producer sarama.SyncProducerConsumerGroupReal sarama.ConsumerGroupConsumerGroupDelay sarama.ConsumerGroupKafkaDelayQueue *KafkaDelayQueueProducer
)func NewKafkaConfig(cfg KafkaConfig) (err error) {Producer, err = sarama.NewSyncProducer(cfg.BrokerList, cfg.Cfg)if err != nil {return err}ConsumerGroupReal, err = sarama.NewConsumerGroup(cfg.BrokerList, cfg.GroupId[0], cfg.Cfg)if err != nil {return err}ConsumerGroupDelay, err = sarama.NewConsumerGroup(cfg.BrokerList, cfg.GroupId[1], cfg.Cfg)if err != nil {return err}return nil
}func GetKafkaDelayQueue(log *log) {KafkaDelayQueue = NewKafkaDelayQueueProducer(Producer, ConsumerGroupDelay, DelayTime, DelayTopic, RealTopic, log)
}
这个里面我没有怎么封装,可以自行封装,使用的是IBM的sarama客户端
总结
基本上就是以上三步实现,里面的一些log日志可以传递自己的log日志即可,使用的是消费者组消费的,添加上自己的topic和groupid即可
重点:以上实现延迟时间可能不是太精准,我使用的时候还是有点小小的误差,不过误差不大,强相关业务还是使用其他专业实现延迟队列mq,或使用自行方案