堆的一个很重要的应用就是堆排序,和快速排序一样,堆排序的时间复杂度也是O(NlgN)
堆排序的实现思路一:
1.创建小根堆
2.每次删除顶部元素并将顶部元素输出(删除的函数中有调整的过程,每次调整)
时间复杂度:O(N·logN)
Input:
14
99 5 36 2 19 1 46 12 7 22 25 28 17 92
Output:
1 2 5 7 12 17 19 22 25 28 36 46 92 99
import java.util.Scanner;
public class heap {static int n, num = 0;static int[] h = new int[15];static Scanner input = new Scanner(System.in);public static void main(String[] args) {n = input.nextInt();for (int i = 1; i <= n; i++) {h[i] = input.nextInt();}num = n;create();for (int i = 1; i <= n; i++) {System.out.print(deletemax() + " ");}}private static void create() {/*** 从最后一个非叶结点到第1个结点向上调整* */for (int i = num / 2; i >= 1; i--) {siftdown(i);}}private static int deletemax() {int temp = h[1];h[1] = h[num];num--;siftdown(1);return temp;}private static void siftup(int i) {int flag = 0;/*** 堆顶* */if (i == 1) {return;}while (i != 1 && flag == 0) {/*** 当前节点是否小于父结点* */if (h[i] < h[i/2]) {int temp = h[i];h[i] = h[i/2];h[i/2] = temp;} else {flag = 1;}/*** 向上调整* */i = i/2;}}private static void siftdown(int i) {int t, flag = 0;while (i * 2 <= num && flag == 0) {if (h[i] > h[i*2]) {t = i * 2;} else {t = i;}if (i * 2 + 1 <= num) {if (h[t] > h[i * 2 + 1]) {t = i * 2 + 1;}}if (t != i) {int temp = h[t];h[t] = h[i];h[i] = temp;i = t;} else {flag = 1;}}}
}
堆排序的实现思路二:
1.创建大根堆
2.h[1]与h[n]交换
3.对h[1]向下调整, n–
时间复杂度:O(N·logN)
Input:
14
99 5 36 2 19 1 46 12 7 22 25 28 17 92
Output:
1 2 5 7 12 17 19 22 25 28 36 46 92 99
import java.util.Scanner;
public class heapPlus {static int num, n = 0;static int[] h = new int[15];static Scanner input = new Scanner(System.in);public static void main(String[] args) {n = input.nextInt();for (int i = 1; i <= n; i++) {h[i] = input.nextInt();}num = n;create();heapsort();for (int i = 1; i <= n; i++) {System.out.print(h[i] + " ");}}private static void heapsort() {while (num > 1) {int temp = h[num];h[num] = h[1];h[1] = temp;num--;siftdown(1);}}private static void create() {/*** 从最后一个非叶结点到第1个结点向上调整* */for (int i = num / 2; i >= 1; i--) {siftdown(i);}}private static void siftup(int i) {int flag = 0;/*** 堆顶* */if (i == 1) {return;}while (i != 1 && flag == 0) {/*** 当前节点是否小于父结点* */if (h[i] > h[i/2]) {int temp = h[i];h[i] = h[i/2];h[i/2] = temp;} else {flag = 1;}/*** 向上调整* */i = i/2;}}private static void siftdown(int i) {int t, flag = 0;while (i * 2 <= num && flag == 0) {if (h[i] < h[i*2]) {t = i * 2;} else {t = i;}if (i * 2 + 1 <= num) {if (h[t] < h[i * 2 + 1]) {t = i * 2 + 1;}}if (t != i) {int temp = h[t];h[t] = h[i];h[i] = temp;i = t;} else {flag = 1;}}}
}
堆是一种优先队列的数据结构
对于普通队列来说,在进行插入操作时比较方便,但是如果寻找队列中最大(或最小)的元素则时间复杂度较高;
对于已排序的数组来说,查找最大(或最小)元素并不在话下,但是插入元素则需要后面的元素整体后移,时间复杂度依旧很高。
而优先队列这种结构,则可以很好的解决上面的两种操作。
之前的Dijkstra算法就可以通过堆来进行优化。