机器学习向量化练习

机器学习向量化练习

在先前的练习里面,我们已经通过对自然图像完成了一个稀疏自编码的练习。在这次我们将通过向量化来使我们运行速度更快,并且我们将把它应用到手写数字里面。

数据下载

  • MNIST Dataset (Training Images)
  • MNIST Dataset (Training Labels)
  • Support functions for loading MNIST in Matlab

第一步:向量化你的稀疏自编码

这一步我已经完成,具体可以看我上一次的博客。


第二步:学习手写数字的特征

1.我们先把train-images-idx3-ubyte.gz和mnistHelper这个两个文件先解压开,然后把文件放到我们上次的稀疏自编码的地方。

2.接下去我们就需要进入上次我们图片采样sampleIMAGES.m的地方,并把代码改成

function patches = sampleIMAGES()
% sampleIMAGES
% Returns 10000 patches for training


%load IMAGES;    % load images from disk 
%use mnist data


patchsize = 28;  % we'll use 8x8 patches 
numpatches = 10000;


% Initialize patches with zeros.  Your code will fill in this matrix--one
% column per patch, 10000 columns. 
patches = zeros(patchsize*patchsize, numpatches);


%%---------- YOUR CODE HERE --------------------------------------
%  Instructions: Fill in the variable called "patches" using data 
%  from IMAGES.  
%  
%  IMAGES is a 3D array containing 10 images
%  For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image,
%  and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize
%  it. (The contrast on these images look a bit off because they have
%  been preprocessed using using "whitening."  See the lecture notes for
%  more details.) As a second example, IMAGES(21:30,21:30,1) is an image
%  patch corresponding to the pixels in the block (21,21) to (30,30) of
%  Image 1


%select 2000 patches from image1
%select 2000 patches from image2
%.....
% for k=1:4
%     for i=1:50
%         for j=1:50
%             patch=IMAGES(8*i-7:8*i,j*8-7:8*j,k);
%             patches(:,2500*(k-1)+50*(i-1)+j)=reshape(patch,64,1);
%         end
%     end
% end
images = loadMNISTImages('train-images-idx3-ubyte');
patches=images(:,1:10000);

然后接着再进去train.m文件

把模型的参数改成这样

visibleSize = 28*28;   % number of input units 
hiddenSize = 196;     % number of hidden units 
sparsityParam = 0.1;   % desired average activation of the hidden units.
                     % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
    %  in the lecture notes). 
lambda = 3e-3;     % weight decay parameter       
beta = 3;            % weight of sparsity penalty term       

%%---------------------------------------------------------------
% For the autoencoder to work well we need to normalize the data
% Specifically, since the output of the network is bounded between [0,1]
% (due to the sigmoid activation function), we have to make sure 
% the range of pixel values is also bounded between [0,1]
patches = normalizeData(patches);


end


%% ---------------------------------------------------------------
function patches = normalizeData(patches)


% Squash data to [0.1, 0.9] since we use sigmoid as the activation
% function in the output layer


% Remove DC (mean of images). 
patches = bsxfun(@minus, patches, mean(patches));


% Truncate to +/-3 standard deviations and scale to -1 to 1
pstd = 3 * std(patches(:));
patches = max(min(patches, pstd), -pstd) / pstd;


% Rescale from [-1,1] to [0.1,0.9]
patches = (patches + 1) * 0.4 + 0.1;


end

然后其他的参数不变。

接着我们就可以运行train了。


最后,在400次迭代后,你的稀疏自编码应该学会了笔画特征。换句话说,我们的程序将会学习图片里面的笔画的特征。我们在程序结束后可以看到这样一幅图


如果你的自编码是有问题的,那你可能得到以下的图


如果你的图片像这样,请你检查你的代码和参数。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566052.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【OpenCV 例程200篇】13. 图像的加法运算(cv2.add)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】13. 图像的加法运算(cv2.add) 函数 cv2.add() 用于图像的加法运算。 函数说明: …

【OpenCV 例程200篇】14. 图像与标量相加(cv2.add)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】14. 图像与标量相加(cv2.add) 函数 cv2.add() 用于图像的加法运算。 函数说明: …

UFLDL之Softmax回归

Softmax回归 Contents [hide]1 简介2 代价函数3 Softmax回归模型参数化的特点4 权重衰减5 Softmax回归与Logistic 回归的关系6 Softmax 回归 vs. k 个二元分类器7 中英文对照8 中文译者 简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模…

【OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】15. 图像的加权加法(cv2.addWeight) 函数 cv2.addWeight() 用于图像的加权加法运算。 函数说…

【OpenCV 例程200篇】16. 不同尺寸的图像加法

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】16. 不同尺寸的图像加法 函数 cv2.add() 用于图像的加法运算, 对两张相同大小和类型的图像进行加法运算&…

二维数据的白化处理

二维数据的白化处理 这篇博客实现起来比较简单,首先先去下载pca_2d.zip,然后打开pca_2d.m改代码,具体代码见下面close all%%%% Step 0: Load data% We have provided the code to load data from pcaData.txt into x.% x is a 2 * 45 matri…

【youcans 的图像处理学习课】4. 图像的叠加与混合

专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 【youcans 的图像处理学习课】4. 图像的叠加与混合 文章目录【youcans 的图像处理学习课】4. 图像的叠加与混合1. 图像的加法运算基本例程:1.22 图像…

PCA白化

自然图片的PCA白化 在这个练习里面我们将实现PCA和ZCA白化。首先先下载这个文件pca_exercise.zip, 然后我们解压它,并用matlab打开它,我们只需要更改pca_gen.m.这个文件。 然后把代码改成下面这个形式 %% %% Step 0a: Load data % Here we provide th…

【OpenCV 例程200篇】17. 两张图像的渐变切换

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】17. 两张图像渐变切换 函数 cv2.addWeight() 用于图像的加权加法运算。 函数说明: cv2.addWeighted(sr…

深度网络概览

深度网络概览 Contents [hide]1 概述2 深度网络的优势3 训练深度网络的困难 3.1 数据获取问题3.2 局部极值问题3.3 梯度弥散问题 4 逐层贪婪训练方法 4.1 数据获取4.2 更好的局部极值 5 中英文对照6 中文译者 概述 在之前的章节中,你已经构建了一个包括输入层、隐…

【OpenCV 例程200篇】18. 图像的掩模加法(mask)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】18. 图像的掩模加法 图像掩模(image mask),也常被写成 “图像掩膜”,是…

【OpenCV 例程200篇】19. 图像的圆形遮罩

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】19. 图像的圆形遮罩 图像掩模(image mask),也常被写成 “图像掩膜”,是…

【OpenCV 例程200篇】20. 图像的按位运算(cv2.bitwise)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】20. 图像的按位运算 函数 cv2.bitwise 提供了图像的位运算,对图像的像素点值按位操作,快速高效…

栈式自编码算法

栈式自编码算法 Contents [hide]1 概述2 训练3 具体实例4 讨论5 中英文对照6 中文译者 概述 逐层贪婪训练法依次训练网络的每一层,进而预训练整个深度神经网络。在本节中,我们将会学习如何将自编码器“栈化”到逐层贪婪训练法中,从而预训练…

【OpenCV 例程200篇】21. 图像的叠加

『youcans 的 OpenCV 例程200篇 - 总目录』 【OpenCV 例程200篇】21. 图像的叠加 两张图像直接进行加法运算后图像的颜色会改变,通过加权加法实现图像混合后图像的透明度会改变,都不能实现图像的叠加。 实现图像的叠加,需要综合运用图像阈值…

微调多层自编码算法

微调多层自编码算法 Contents [hide]1 介绍2 一般策略3 使用反向传播法进行微调4 中英文对照5 中文译者 介绍 微调是深度学习中的常用策略,可以大幅提升一个栈式自编码神经网络的性能表现。从更高的视角来讲,微调将栈式自编码神经网络的所有层视为一个…

【OpenCV 例程200篇】22. 图像添加非中文文字(cv2.putText)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】22. 图像添加非中文文字 函数 cv2.putText() 用于在图像上绘制文本字符串,即添加文字。 OpenCV 不支持显示中文字符,使用 cv2.putText() 时添加的文本字符串不能包含中文字符…

自我学习

自我学习 今天让我们来完成自我学习的代码。完成这个代码需要结合稀疏自编码和softmax分类器,具体的可以看我以前的博客。依赖MNIST DatasetSupport functions for loading MNIST in MatlabStarter Code (stl_exercise.zip) 第一步:生成相应的输入和测试数据集这需要…

【OpenCV 例程200篇】23. 图像添加中文文字(ImageDraw.Draw)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】23. 图像添加中文文字 OpenCV 不支持显示中文字符,使用 cv2.putText() 时添加的文本字符串不能包含中文字符(包括中文标点符号)。在图像中添加中文字符&#xff0…

【OpenCV 例程200篇】24. 图像的仿射变换(cv2.warpAffine)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】24. 图像的仿射变换 几何变换的可以分为等距变换、相似变换、仿射变换和投影变换。在很多书籍中把等距变换、相似变换都称为仿射变换,常见的仿射变换包括平移、旋转、缩放、翻转、斜切等…