文章目录
- 多臂赌博机Multi-armed bandit(无状态)
- 马尔科夫决策过程MDP(markov decision process
- 1.动态规划
- 蒙特卡罗方法——不知道环境完整模型情况下
- 2.1 on-policy蒙特卡罗
- 2.2 off-policy蒙特卡罗
- 时序差分方法
- 强化学习:Reinforcement learning
- 目标:学习从环境状态到行为的映射,智能体选择能够获得环境最大奖赏的行为,使得外部环境对学习系统在某种意义下的评价为最佳
- 区别:
- 监督学习:标注中学习
- 强化学习:交互——学习策略
- 特性——用于判断某一问题可否用强化学习求解
- 试错搜索
- 延迟奖励
- 挑战
- exploitation 开采(按原方法进行
- exploration勘测(看有没有其他方法,试一试
- 注重总体目标,阶段性不重要
- 主体:智能体和环境
- 状态、行为和奖励
- 要素
- 策略
- 状态到行为的映射
- 确定策略S->A
- 随机策略S->A1\A2\A3?
- 状态到行为的映射
- 奖励
- 关于状态和行为的函数,有不确定性
- 价值
- 累积奖励
- 长期目标
- 环境模型
- 刻画反馈
- 策略
- 反馈
- 评价性反馈(强化学习)
- 对行为评价
- 指导性反馈(监督学习)
- 独立于行为
- 评价性反馈(强化学习)
多臂赌博机Multi-armed bandit(无状态)
方法 | 确定性? | 特性 | |
---|---|---|---|
贪心策略 | At=argmaxaQt(a)(均值)At=argmax_aQ_t(a)(均值)At=argmaxaQt(a)(均值) | 确定性算法 | |
ϵ\epsilonϵ贪心策略 | 1−ϵ1-\epsilon1−ϵ:贪心选择;ϵ\epsilonϵ:随机选择 | 确定性算法 | - |
乐观初值法Optimistic initial values | 每个行为的初值都高Q1高,ϵ=0\epsilon=0ϵ=0, | 确定性算法 | 初始只探索,最终贪心 |
UCB | AT=argmaxa(Qt(a)+clntNt(a)),Nt(a)−a被选择的次数A_T=argmax_a(Q_t(a)+c\sqrt{\frac{lnt}{N_t(a)}}),N_t(a)-a被选择的次数AT=argmaxa(Qt(a)+cNt(a)lnt),Nt(a)−a被选择的次数 | 确定性算法 | 最初差,后比贪心好,收敛于贪心 |
梯度赌博机算法 | $P(A_t=a)=\frac{e{H_t(a)}}{\Sigma_b=1k e^{H_t(b)}}=\pi_t(a).优化目标 E(R_t)=\Sigma_b\pi_t(b)q(b) $ | 不确定性算法 | 更新Ht |
-
形式化
- 行为:摇哪个臂
- At:第t轮的行为
- 奖励:每次摇臂获得的奖励
- Rt:奖励
- 第t轮采取的行为a的期望:
- q(a)=E(Rt|At=a)
- –贪心策略,每次都选期望最大的a,但不知道期望
- 只能通过经验,对q(a)估计Qt(a),用贪心策略依据Qt(a)
- 行为:摇哪个臂
-
优化目标:当前行为的期望收益
-
策略
- 利用:exploitation
- 按照贪心策略进行选择,即选择𝑄𝑡 𝑎 最大的行为𝑎
- 优点:最大化即时奖励
- 缺点:由于𝑄𝑡 𝑎 只是对𝑞∗ 𝑎 的估计,估计的不确定性导致按照贪心策略选择的行为不一定是使𝑞∗ 𝑎 最大的行为
- 探索:Exploration
- 选择贪心策略之外的行为(non-greedy actions)
- 缺点:短期奖励会比较低
- 优点:长期奖励会比较高,通过探索可以找出奖励更大的行为,供后续选择
- 每次二选一,如何平衡?
- 利用:exploitation
-
贪心策略
- At=argmaxaQt(a)A_t=argmax_aQ_t(a)At=argmaxaQt(a)
- 有多个最大,则随即一个
-
ϵ\epsilonϵ贪心策略
- 1−ϵ1-\epsilon1−ϵ:贪心选择(exploitation
- ϵ\epsilonϵ:随机选择(exporation
- ϵ\epsilonϵ–取决于q(a)的方差,方差越大,取值越大
- eg
- 假设q(a)~N(0,1)
- 则At~N(0,1)正态分布
-
行为估值方法Qt(a)
- Qt(a)=采取该行为所获得的奖励和采取该行为的次数=Σi=1t−1Ri1Ai=aΣi=1t−11Ai=a=行为a奖励的均值Q_t(a)=\frac{采取该行为所获得的奖励和}{采取该行为的次数}=\frac{\Sigma_{i=1}^{t-1}R_i1_{A_i=a}}{\Sigma_{i=1}^{t-1}1_{A_i=a}}=行为a奖励的均值Qt(a)=采取该行为的次数采取该行为所获得的奖励和=Σi=1t−11Ai=aΣi=1t−1Ri1Ai=a=行为a奖励的均值
- 约定,分母=0,Qt(a)=0
- 分母无穷大,Qt(a)–>q(a)
- 增量实现
- Qn(a)=R1+R2+...+Rn−1n−1Q_n(a)=\frac{R_1+R_2+...+R_{n-1}}{n-1}Qn(a)=n−1R1+R2+...+Rn−1
- Qn+1(a)=R1+R2+...+Rn−1+Rnn=1n(Rn+Σi=1n−1Ri)=1n(Rn+(n−1)Qn(a))=Qn(a)−1n(Rn−Qn(a))Q_{n+1}(a)=\frac{R_1+R_2+...+R_{n-1}+R_{n}}{n}=\frac{1}{n}(R_n+\Sigma_{i=1}^{n-1}R_i)=\frac{1}{n}(R_n+(n-1)Q_n(a))=Q_n(a)-\frac{1}{n}(R_n-Q_n(a))Qn+1(a)=nR1+R2+...+Rn−1+Rn=n1(Rn+Σi=1n−1Ri)=n1(Rn+(n−1)Qn(a))=Qn(a)−n1(Rn−Qn(a))
- 更新公式newEstimate<−−oldEstimate+stepsize(target−oldEstimate)newEstimate<--oldEstimate+stepsize(target-oldEstimate)newEstimate<−−oldEstimate+stepsize(target−oldEstimate)
- 贪心策略的步长:1/n
- 收敛
- 更一般的:α或αt(a)\alpha或\alpha_t(a)α或αt(a)——像SGD
- 贪心策略的步长:1/n
- 非平稳状态的更新公式
- Qn+1(a)=Qn(a)−α(Rn−Qn(a))=αRn+(1−α)Qn(a)=αRn+(1−α)αRn−1+(1−α)2Qn−1=...=(1−α)nQ1+Σi=1n(1−α)n−iαRiQ_{n+1}(a)=Q_n(a)-\alpha(R_n-Q_n(a))=\alpha R_n+(1-\alpha)Q_n(a)=\alpha R_n+(1-\alpha)\alpha R_{n-1}+(1-\alpha)^2Q_{n-1}=...=(1-\alpha)^nQ_1+\Sigma_{i=1}^n(1-\alpha)^{n-i}\alpha R_iQn+1(a)=Qn(a)−α(Rn−Qn(a))=αRn+(1−α)Qn(a)=αRn+(1−α)αRn−1+(1−α)2Qn−1=...=(1−α)nQ1+Σi=1n(1−α)n−iαRi
- 这已经是个非平稳的了,时间越近,占比越大—带权值平均
- 不收敛
- 收敛条件
- Σn=1∞αn(a)=∞\Sigma_{n=1}^{\infty}\alpha_n(a)=\inftyΣn=1∞αn(a)=∞:步长足够大,克服初值和随机扰动的影响
- $ \Sigma_{n=1}{\infty}\alpha_n2(a)<\infty$:步长最终会越来越小,小到保证收敛
-
平稳问题
- q(a)是稳定的,不随时间改变
- 随着观测样本的增加,平均值估计方法最终收敛于q(a)
-
非平稳问题
- q(a)是关于时间的函数(可能老化了)
- 关注最近的观测样本,时间远的就不靠谱了
-
N(A)–A被选择的次数
-
行为选择策略
- 如何制定?
- 贪心策略:选择当前估值最好的行为
- 𝜺贪心策略:以一定的概率随机选择非贪心行为(nongreedy actions),但是对于非贪心行为不加区分
- 平衡exploitation和exploration,应对行为估值的不确定性
- 关键:确定每个行为被选择的概率
- 行为的初始估值
- 前述贪心策略中,每个行为的初始估值为0
- 每个行为的初始估值可以帮助我们引入先验知识
- 初始估值还可以帮助我们平衡exploitation和exploration
- 乐观初值法Optimistic initial values
- 每个行为都有个高的初值
- 优点:初期每个行为都有较大的机会被探索,快速探索
- 早期只探索,不开采,不关心历史
- 早期差,但后期很快就跟上
- 缺点:可能一辈子都探索不完
- ==Q1=5,𝜺=0的𝜺贪心
- UCB(Upper-confidence-bound上确界
- AT=argmaxa(Qt(a)+clntNt(a)),Nt(a)−a被选择的次数A_T=argmax_a(Q_t(a)+c\sqrt{\frac{lnt}{N_t(a)}}),N_t(a)-a被选择的次数AT=argmaxa(Qt(a)+cNt(a)lnt),Nt(a)−a被选择的次数
- 选择潜力大的:依据估值的置信上界选择
- 第一项:当前估值高(接近贪心
- 第二项:不确定性要求高(被选择的次数少–潜力大
- c:控制探索的程度
- 比较:
- 最初几轮差,之后会比𝜺贪心策略好
- 稳定
- 参数不好调
- 最终会收敛到贪婪策略
- 复杂,在多臂赌博机之外的情况用得少
- 如何制定?
-
梯度赌博机算法
- 不确定性算法(随机策略
- Ht(a):在t轮对行为a的偏好程度
- 依据选择后的行为,再更新Ht(a)
- 选择a的概率P(At=a)=eHt(a)Σb=1keHt(b)=πt(a)P(A_t=a)=\frac{e^{H_t(a)}}{\Sigma_b=1^k e^{H_t(b)}}=\pi_t(a)P(At=a)=Σb=1keHt(b)eHt(a)=πt(a)
- 更新公式==SGD
- Ht+1(At)=Ht(At)+α(Rt−Rtˉ)(1−πt(At));Rtˉ=Qt(a)均值H_{t+1}(A_t)=H_t(A_t)+\alpha(R_t-\bar{R_t})(1-\pi_t(A_t));\bar{R_t}=Q_t(a)均值Ht+1(At)=Ht(At)+α(Rt−Rtˉ)(1−πt(At));Rtˉ=Qt(a)均值
- 对所有a!=A_t:Ht+1(a)=Ht(a)−α(Rt−Rtˉ)(πt(a))H_{t+1}(a)=H_t(a)-\alpha(R_t-\bar{R_t})(\pi_t(a))Ht+1(a)=Ht(a)−α(Rt−Rtˉ)(πt(a))
- 优化目标:第t轮期望奖励的大小
- E(Rt)=Σbπt(b)q(b)E(R_t)=\Sigma_b\pi_t(b)q(b)E(Rt)=Σbπt(b)q(b)
- E(Rt)=Σbπt(b)q(b)E(R_t)=\Sigma_b\pi_t(b)q(b)E(Rt)=Σbπt(b)q(b)
-
多臂赌博机–强化学习的简化
- 行为和状态之间无关
-
扩展
- 有上下文的多臂赌博及
- 行为不改变状态
- 有上下文的多臂赌博及
-
更一般的情形
- 马尔科夫决策过程
马尔科夫决策过程MDP(markov decision process
-
常用于建模序列化决策过程
-
行为
- 可获得奖励
- 改变状态–影响长期奖励
-
学习状态到行为的映射–策略
- 多臂赌博机q(a)
- MDP学习𝑞(𝑠,𝑎) 或𝒗(𝑠)
-
智能体和环境按离散的时间交互
-
形式化记号
- St∈SS_t \in SSt∈S状态
- At∈AA_t \in AAt∈A行为(有的地方可以走,有的不可以走,有个取值范围)
- 采取At后,转到状态St+1,并获得Rt+1
- 马尔科夫决策过程得到的序列记为
- S0,A0,R1,S1,A1,R2,S2,...S_0,A_0,R_1,S_1,A_1,R_2,S_2,...S0,A0,R1,S1,A1,R2,S2,...
-
有限马尔科夫决策过程的建模
- p(s′,r∣s,a)=P(St=s′,Rt=r∣st−1=s,At−1=a),[0,1]p(s',r|s,a)=P(St=s',Rt=r|s_{t-1}=s,A_{t-1}=a),[0,1]p(s′,r∣s,a)=P(St=s′,Rt=r∣st−1=s,At−1=a),[0,1]
- 和为1
- 枚举很大,(能枚举出来的话,A*就可以了
- 状态转移概率:
- p(s′∣s,a)=Σrp(s′,r∣s,a)p(s'|s,a)=\Sigma_r p(s',r|s,a)p(s′∣s,a)=Σrp(s′,r∣s,a)
- 状态-行为对的期望奖励
- r(s,a)=E(Rt∣st−1=s,At−1=a)=ΣrrΣs′p(s′,r∣s,a)r(s,a)=E(Rt|s_{t-1}=s,A_{t-1}=a)=\Sigma_r r\Sigma_s' p(s',r|s,a)r(s,a)=E(Rt∣st−1=s,At−1=a)=ΣrrΣs′p(s′,r∣s,a)
- 状态-行为-下一个状态,的奖励
- r(s,a,s′)=E(Rt∣St−1=s,At−1=a,St=s′)=Σrrp(s′,r∣s,a)p(s′∣s,a)r(s,a,s')=E(Rt|S_{t-1}=s,A_{t-1}=a,S_t=s')=\Sigma_r r \frac{p(s',r|s,a)}{p(s'|s,a)}r(s,a,s′)=E(Rt∣St−1=s,At−1=a,St=s′)=Σrrp(s′∣s,a)p(s′,r∣s,a)
- r(s,a,s′)=E(Rt∣St−1=s,At−1=a,St=s′)=Σrrp(s′,r∣s,a)p(s′∣s,a)r(s,a,s')=E(Rt|S_{t-1}=s,A_{t-1}=a,S_t=s')=\Sigma_r r \frac{p(s',r|s,a)}{p(s'|s,a)}r(s,a,s′)=E(Rt∣St−1=s,At−1=a,St=s′)=Σrrp(s′∣s,a)p(s′,r∣s,a)
- p(s′,r∣s,a)=P(St=s′,Rt=r∣st−1=s,At−1=a),[0,1]p(s',r|s,a)=P(St=s',Rt=r|s_{t-1}=s,A_{t-1}=a),[0,1]p(s′,r∣s,a)=P(St=s′,Rt=r∣st−1=s,At−1=a),[0,1]
-
奖励假设
- 目标:长期或最终的
- 奖励:即时的
- 假设(强化学习的基础)
- 目标和目的是奖励累积的期望值的最大化
-
累积奖励
- 多幕式任务:Gt=Rt+1+Rt+2+Rt+3+...+RT(t<T,T−最终步,终止态)G_t=R_{t+1}+R_{t+2}+R_{t+3}+...+R_{T}(t<T,T-最终步,终止态)Gt=Rt+1+Rt+2+Rt+3+...+RT(t<T,T−最终步,终止态)
- 具有终止态的马尔科夫决策过程——多幕式任务
- 连续式任务Gt=Rt+1+γRt+2+γ2Rt+3+...=Σk=0∞γkRt+k+1,0≤γ≤1(折扣率G_t=R_{t+1}+\gamma R_{t+2}+\gamma^2 R_{t+3}+...=\Sigma_{k=0}^{\infty}\gamma^kR_{t+k+1},0 \leq \gamma \leq 1(折扣率Gt=Rt+1+γRt+2+γ2Rt+3+...=Σk=0∞γkRt+k+1,0≤γ≤1(折扣率
- 无终止
- 递推:Gt=Σk=0∞γkRt+k+1=Rt+1+γGt+1G_t=\Sigma_{k=0}^{\infty}\gamma^kR_{t+k+1}=R_{t+1}+\gamma G_{t+1}Gt=Σk=0∞γkRt+k+1=Rt+1+γGt+1
- 求和公式Gt=Σk=t+1Tγk−t−1Rk,T=∞和γ=1不能同时出现(不收敛)G_t=\Sigma_{k=t+1}^{T}\gamma^{k-t-1}R_{k},T=\infty和\gamma=1不能同时出现(不收敛)Gt=Σk=t+1Tγk−t−1Rk,T=∞和γ=1不能同时出现(不收敛)
- 多幕式任务:Gt=Rt+1+Rt+2+Rt+3+...+RT(t<T,T−最终步,终止态)G_t=R_{t+1}+R_{t+2}+R_{t+3}+...+R_{T}(t<T,T-最终步,终止态)Gt=Rt+1+Rt+2+Rt+3+...+RT(t<T,T−最终步,终止态)
-
策略
- 状态到行为的映射
- 随机式策略π(a∣s)\pi(a|s)π(a∣s)概率
- 确定式策略a=π(s)a=\pi(s)a=π(s)
- 状态估值函数
- vπ(s)=Eπ(Gt∣St=s)=Eπ(Σk=0∞γkRt+k+1∣St=s),foralls∈Sv_{\pi}(s)=E_\pi(G_t|S_t=s)=E_\pi(\Sigma_{k=0}^{\infty}\gamma^kR_{t+k+1}|S_t=s),for all s \in Svπ(s)=Eπ(Gt∣St=s)=Eπ(Σk=0∞γkRt+k+1∣St=s),foralls∈S
- 行为估值函数
- q(s,a)=Eπ(Gt∣St=s,At=a)=Eπ(Σk=0∞γkRt+k+1∣St=s,At=a)q(s,a)=E_\pi(G_t|S_t=s,A_t=a)=E_\pi(\Sigma_{k=0}^{\infty}\gamma^kR_{t+k+1}|S_t=s,A_t=a)q(s,a)=Eπ(Gt∣St=s,At=a)=Eπ(Σk=0∞γkRt+k+1∣St=s,At=a)
-
贝尔曼方程(方程,可以联立)
- n个状态–>n个方程n个变量的线性方程组
- n个状态–>n个方程n个变量的线性方程组
-
最优策略
- 策略π和π′两个策略,对于所有s,vπ(s)≥vπ′(s)===π≥π′策略\pi和\pi'两个策略,对于所有s,v_{\pi}(s)\geq v_{\pi'}(s)===\pi \geq \pi'策略π和π′两个策略,对于所有s,vπ(s)≥vπ′(s)===π≥π′
- v∗(s)=maxπvπ(s),对应的最优策略可以有多个,但v一样v*(s)=max_{\pi}v_{\pi}(s),对应的最优策略可以有多个,但v一样v∗(s)=maxπvπ(s),对应的最优策略可以有多个,但v一样
- 行为估值函数:q∗(s,a)=maxπqπ(s,a)q*(s,a)=max_\pi q_\pi(s,a)q∗(s,a)=maxπqπ(s,a)
-
贝尔曼最优方程(这是个赋值)
-
基于状态估值函数的贝尔曼最优性方程
- 第一步:求解状态估值函数的贝尔曼最优性方程得到最优策略对应的状态估值函数
- 第二步:根据状态估值函数的贝尔曼最优性方程,进行一步搜索找到每个状态下的最优行为
- 注意:最优策略可以存在多个
- 贝尔曼最优性方程的优势,可以采用贪心局部搜索即可得到全局最优解
-
基于行为估值函数的贝尔曼最优性方程
- 直接得到最优策略
-
局限性
- 需要知道环境模型
- 需要高昂的计算代价和内存(存放估值函数)
- 依赖于马尔科夫性
-
实际应用
- 动态规划(考)
- 蒙特卡罗方法
- 时序查分(用的多
- 参数化方法(用的多
1.动态规划
- 策略估值
- 列方程(计算量大
- 迭代策略估值——寻找不动点
- 更新规则(期望更新)vk+1(s)=Σaπ(a∣s)Σs′r′p(s′,r∣s,a)(r+γvk(s′))v_{k+1}(s)=\Sigma_a\pi(a|s)\Sigma_{s'r'}p(s',r|s,a)(r+\gamma v_k(s'))vk+1(s)=Σaπ(a∣s)Σs′r′p(s′,r∣s,a)(r+γvk(s′))
- 得到稳定点时,得到方程的解
- 两种实现方式
- 同步更新:两个数组存放,一个新数组,一个旧数组
- 异步更新:一个数组,同时放新的和旧的。(收敛快,收敛性有保证)
- 目标:寻找最优策略(策略提升)
import numpy as np
v=np.zeros((5,5))
print(v)
[[0. 0. 0. 0. 0.][0. 0. 0. 0. 0.][0. 0. 0. 0. 0.][0. 0. 0. 0. 0.][0. 0. 0. 0. 0.]]
action=np.array([[-1,0],[1,0],[0,-1],[0,1]])
for k in range(100): for i in range(0,5):for j in range(5):s=np.array([i,j])v_a=0.0for a in action:s_1=s+a if(s_1[0]<0 or s_1[0]>4 or s_1[1]<0 or s_1[1]>4):#超出范围s_1=sv_a+=1/4*(-1.+0.9*v[s_1[0],s_1[1]])elif(np.equal([0,1],s).all()):#As_1=np.array([4,1])v_a+=1/4*(10.+0.9*v[s_1[0],s_1[1]])elif(np.equal([0,3],s).all()):#As_1=np.array([2,3])v_a+=1/4*(5.+0.9*v[s_1[0],s_1[1]])else:v_a+=1/4*0.9*v[s_1[0],s_1[1]]v[i,j]=v_a
# print(v[i,j])
# s_.append(s_1)print(v)
[[-0.5 7.25 1.38125 3.5 0.2875 ][-0.3625 1.5496875 0.65946094 0.93587871 0.02526021][-0.3315625 0.27407813 0.21004629 0.25783312 -0.186304 ][-0.32460156 -0.01136777 0.04470267 0.06807055 -0.27660253][-0.57303535 -0.3814907 -0.32577731 -0.30798402 -0.63153197]]
[[ 0.8246875 8.62374378 2.93700231 4.46153736 0.63890445][ 0.12807031 2.17920446 1.40897965 1.38456233 0.16904517][-0.30715352 0.46591413 0.48992165 0.39515637 -0.22720862][-0.5236356 -0.08876464 0.03227631 -0.03535962 -0.51340812][-0.96151933 -0.64544919 -0.5305602 -0.58872306 -1.0321689 ]]
[[ 1.84026754 8.75466414 3.70149128 4.77057646 0.89892187][ 0.61408748 2.52982021 1.82380398 1.61068095 0.30157386][-0.19392719 0.61583626 0.64509141 0.44847092 -0.24787869][-0.64776552 -0.14514798 -0.01484469 -0.15041361 -0.6873706 ][-1.22365701 -0.82258324 -0.69026002 -0.80385226 -1.30000115]]
[[ 2.43608951 8.66455575 4.01609618 4.87609758 1.06949091][ 0.96186575 2.71486389 2.0220148 1.72083536 0.38990482][-0.08439791 0.70434212 0.71099621 0.45754634 -0.26975458][-0.72271789 -0.19255583 -0.07250248 -0.24889027 -0.81385373][-1.39833841 -0.94834094 -0.81586503 -0.96293696 -1.48477842]]
[[ 2.76218512e+00 8.55939491e+00 4.13156078e+00 4.90596573e+001.17284179e+00][ 1.17976629e+00 2.80474158e+00 2.10783013e+00 1.76878058e+004.38898838e-01][-7.67666250e-03 7.45988690e-01 7.28744102e-01 4.45247962e-01-2.94878841e-01][-7.72289979e-01 -2.35607559e-01 -1.28614221e-01 -3.28535315e-01-9.07460420e-01][-1.51639424e+00 -1.04114675e+00 -9.13426666e-01 -1.08017741e+00-1.61536880e+00]]
[[ 2.93429457 8.4730898 4.16415045 4.90438466 1.23001759][ 1.3050033 2.84218018 2.13836745 1.78355225 0.46045771][ 0.0359807 0.75854192 0.7230472 0.42371669 -0.32158709][-0.80986999 -0.27474503 -0.17857346 -0.39206128 -0.97820746][-1.59885617 -1.11133929 -0.98879128 -1.16718972 -1.70963033]]
[[ 3.02050351 8.40629118 4.16296859 4.88949532 1.25724735][ 1.37082523 2.8516558 2.14227537 1.78108765 0.46487126][ 0.05498252 0.75486161 0.70701305 0.39925177 -0.34802609][-0.84140995 -0.30970375 -0.22129723 -0.4426746 -1.03267116][-1.65885386 -1.16545484 -1.04711494 -1.23248716 -1.77899427]]
[[ 3.05907777 8.3547335 4.14863137 4.86963139 1.2660244 ][ 1.4007218 2.84683326 2.1338022 1.77020024 0.45944071][ 0.05806009 0.7429956 0.68731927 0.37503424 -0.37290002][-0.86917918 -0.34041052 -0.25714818 -0.48313626 -1.07523288][-1.70427689 -1.20788287 -1.09254246 -1.28211103 -1.8309498 ]]
[[ 3.07156244 8.3144941 4.12997579 4.84881517 1.26406856][ 1.40986496 2.83526029 2.12012001 1.75576728 0.44893472][ 0.05189183 0.7276637 0.6672757 0.35257651 -0.39548988][-0.89394432 -0.36704513 -0.28697583 -0.51564223 -1.10889583][-1.73983572 -1.24164389 -1.12823647 -1.3203114 -1.87049904]]
[[ 3.07018389 8.28265155 4.11085157 4.82897256 1.25635999][ 1.40762022 2.82106248 2.10486533 1.74045355 0.43630814][ 0.04097707 0.71151078 0.64844478 0.3324974 -0.41550554][-0.91596582 -0.38994182 -0.31170954 -0.54189436 -1.13577882][-1.76838826 -1.26884735 -1.15654857 -1.35008201 -1.90104325]]
[[ 3.0618939 8.25712464 4.09290817 4.81095457 1.2459961 ][ 1.39959957 2.80644757 2.08985717 1.72566389 0.42330408][ 0.02812736 0.69594252 0.6314822 0.31494289 -0.43293341][-0.93538792 -0.40950052 -0.33220378 -0.56320239 -1.15741552][-1.79172765 -1.29099042 -1.17921057 -1.3735461 -1.92493583]]
[[ 3.0506152 8.23643451 4.07678474 4.79505123 1.23482819][ 1.38907768 2.79254517 2.0759571 1.71208244 0.41088829][ 0.01499592 0.68164262 0.61657624 0.29981765 -0.44791967][-0.95236454 -0.42613113 -0.34919277 -0.58057577 -1.17494053][-1.81103231 -1.309157 -1.19749895 -1.39222524 -1.94383342]]
[[ 3.03851708e+00 8.21951679e+00 4.06264472e+00 4.78126344e+001.22390683e+00][ 1.37790557e+00 2.77987997e+00 2.06351626e+00 1.69998427e+003.99543436e-01][ 2.49040483e-03 6.68883485e-01 6.03680541e-01 2.86913109e-01-4.60690822e-01][-9.67083453e-01 -4.40223689e-01 -3.63289019e-01 -5.94796878e-01-1.18920887e+00][-1.82711864e+00 -1.32414961e+00 -1.21236164e+00 -1.40722387e+00-1.95892241e+00]]
[[ 3.02675272 8.20559029 4.05042831 4.76945062 1.21378173][ 1.36708145 2.76864108 2.0526152 1.68941753 0.38946167][-0.00894133 0.65771024 0.59263864 0.27597791 -0.47150353][-0.9797576 -0.45213435 -0.3749972 -0.60647671 -1.20087509][-1.84058251 -1.33657632 -1.22451078 -1.4193551 -1.97106687]]
[[ 3.01588987 8.1940688 4.03997666 4.75941148 1.20469824][ 1.35710099 2.75883642 2.04319558 1.68031049 0.38066755][-0.01912473 0.6480486 0.5832506 0.26675569 -0.48061496][-0.99060982 -0.46218032 -0.38473137 -0.61609632 -1.21044698][-1.85187901 -1.34690795 -1.23448867 -1.42922657 -1.98090664]]
[[ 3.00616364 8.18450261 4.03109442 4.75092768 1.19672313][ 1.34816967 2.75038121 2.03513326 1.67253394 0.37309467][-0.02804116 0.63976732 0.5753081 0.25900442 -0.48826664][-0.99985982 -0.47063966 -0.39283122 -0.62403758 -1.21832301][-1.8613683 -1.35551603 -1.24271406 -1.43729909 -1.98892296]]
[[ 2.9976249 8.17653977 4.0235814 4.74378671 1.18982372][ 1.34033029 2.74314839 2.02827866 1.66593701 0.36663247][-0.03575576 0.63271374 0.56861226 0.25250514 -0.49467671][-1.0077153 -0.47775348 -0.39957589 -0.63060589 -1.22481893][-1.86934278 -1.36269843 -1.24951468 -1.44392709 -1.99548319]]
[[ 2.99022697 8.16990001 4.01724803 4.73779298 1.1839164 ][ 1.33353873 2.73699701 2.02247872 1.66036709 0.36115383][-0.04237418 0.62673336 0.5629818 0.24706491 -0.5000373 ][-1.01436679 -0.48372924 -0.4051953 -0.63604719 -1.23018699][-1.87604393 -1.36869691 -1.25515015 -1.44938671 -2.00087152]]
[[ 2.98387585 8.16435708 4.01192228 4.73277224 1.17889575][ 1.32770842 2.73178746 2.01758819 1.65568031 0.35653083][-0.04801732 0.62168011 0.55825603 0.24251667 -0.50451478][-1.01998539 -0.48874444 -0.40987929 -0.64056067 -1.23463014][-1.88167329 -1.37370958 -1.25982829 -1.45389562 -2.00531048]]
[[ 2.97845887 8.15972638 4.00745205 4.7285725 1.17465134][ 1.32273592 2.72738938 2.013475 1.65174638 0.3526431 ][-0.052807 0.61742114 0.55429504 0.23871734 -0.50825151][-1.02472228 -0.49295025 -0.41378494 -0.64430851 -1.23831264][-1.88640015 -1.37789986 -1.26371696 -1.4576271 -2.00897616]]
[[ 2.97386051 8.15585603 4.00370501 4.72506302 1.17107698][ 1.31851523 2.72368517 2.01002211 1.64845025 0.34938173][-0.0568584 0.6138386 0.55097845 0.23554546 -0.51136832][-1.02870949 -0.49647503 -0.41704246 -0.64742327 -1.24136809][-1.89036717 -1.38140328 -1.2669527 -1.46072033 -2.01200916]]
[[ 2.96997076 8.15262039 4.00056737 4.72213236 1.16807531][ 1.31494537 2.72057096 2.00712758 1.6456921 0.34665069][-0.06027638 0.61082955 0.54820353 0.23289841 -0.51396714][-1.03206132 -0.49942744 -0.41975997 -0.65001374 -1.24390558][-1.89369476 -1.38433259 -1.26964726 -1.46328786 -2.01452265]]
[[ 2.96668914 8.14991509 3.99794204 4.71968621 1.16555969][ 1.31193404 2.71795641 2.00470367 1.64338627 0.34436664][-0.06315417 0.60830512 0.54588313 0.23068991 -0.51613364][-1.03487598 -0.50189927 -0.42202736 -0.65216945 -1.24601455][-1.89648457 -1.38678183 -1.27189247 -1.4654213 -2.01660826]]
[[ 2.96392617 8.14765316 3.99574664 4.71764509 1.1634545 ][ 1.30939905 2.71576373 2.00267545 1.64145985 0.34245815][-0.06557335 0.6061892 0.54394362 0.22884759 -0.51793955][-1.03723746 -0.50396793 -0.4239194 -0.65396422 -1.24776848][-1.8988224 -1.38882954 -1.27376411 -1.46719552 -2.01834062]]
[[ 2.96160352 8.14576202 3.99391157 4.71594227 1.16169462][ 1.30726841 2.71392639 2.00097932 1.63985115 0.34086448][-0.06760447 0.60441696 0.54232301 0.22731084 -0.51944486][-1.03921726 -0.50569858 -0.42549838 -0.6554591 -1.24922794][-1.90078061 -1.39054139 -1.27532486 -1.46867202 -2.01978077]]
[[ 2.95965343 8.14418102 3.99237819 4.71452182 1.1602245 ][ 1.30547985 2.71238786 1.99956155 1.6385082 0.33953427][-0.06930811 0.60293344 0.54096917 0.22602902 -0.52069964][-1.04087602 -0.50714603 -0.42681618 -0.6567046 -1.25044291][-1.90242019 -1.39197231 -1.27662671 -1.46990142 -2.02097882]]
[[ 2.95801774 8.14285942 3.99109722 4.713337 1.15899706][ 1.3039799 2.71110022 1.99837683 1.63738735 0.33842429][-0.07073593 0.60169217 0.53983842 0.22495984 -0.52174564][-1.04226509 -0.50835632 -0.42791607 -0.65774263 -1.25145475][-1.9037925 -1.39316826 -1.27771281 -1.47092553 -2.02197603]]
[[ 2.95664683 8.14175479 3.99002732 4.71234872 1.1579726 ][ 1.30272298 2.71002303 1.99738712 1.63645199 0.33749823][-0.07193182 0.60065399 0.5388941 0.22406801 -0.52261769][-1.04342779 -0.50936808 -0.42883412 -0.65860794 -1.25229769][-1.90494074 -1.39416772 -1.27861904 -1.47177892 -2.02280645]]
[[ 2.95549857 8.14083161 3.98913382 4.71152437 1.15711776][ 1.30167037 2.7091222 1.99656048 1.63567149 0.3367257 ][-0.07293293 0.59978594 0.53810557 0.22332407 -0.52334476][-1.04440064 -0.51021372 -0.4296004 -0.65932941 -1.25300012][-1.90590121 -1.39500288 -1.27937528 -1.47249026 -2.02349824]]
[[ 2.9545373 8.14006017 3.98838774 4.71083673 1.15640454][ 1.30078931 2.70836908 1.99587012 1.63502024 0.33608129][-0.07377062 0.59906032 0.53744717 0.22270348 -0.52395103][-1.0452144 -0.51092041 -0.43024003 -0.65993106 -1.2535856 ][-1.90670443 -1.39570068 -1.28000641 -1.47308334 -2.02407472]]
[[ 2.95373292 8.13941558 3.98776479 4.71026311 1.15580953][ 1.30005215 2.70773959 1.99529365 1.63447685 0.33554374][-0.07447132 0.59845388 0.53689747 0.22218575 -0.5244566 ][-1.04589488 -0.51151088 -0.43077395 -0.66043286 -1.2540737 ][-1.90737599 -1.39628364 -1.28053315 -1.47357792 -2.02455524]]
[[ 2.95306005 8.13887705 3.98724469 4.70978458 1.15531316][ 1.29943561 2.70721354 1.99481232 1.63402344 0.33509534][-0.07505726 0.59794715 0.53643854 0.22175382 -0.52487826][-1.04646378 -0.5120042 -0.43121963 -0.66085142 -1.25448069][-1.90793737 -1.39677063 -1.2809728 -1.47399041 -2.02495585]]
[[ 2.95249737 8.13842716 3.98681047 4.70938536 1.15489908][ 1.29892008 2.70677401 1.99441045 1.63364512 0.33472129][-0.07554711 0.59752378 0.53605539 0.22139344 -0.52522995][-1.0469393 -0.5124163 -0.43159165 -0.6612006 -1.25482009][-1.90840655 -1.39717741 -1.28133976 -1.47433449 -2.02528992]]
[[ 2.95202695 8.13805136 3.98644797 4.70905228 1.15455364][ 1.29848914 2.70640681 1.99407494 1.63332944 0.33440924][-0.07595654 0.59717011 0.53573554 0.22109275 -0.52552331][-1.0473367 -0.51276052 -0.4319022 -0.66149191 -1.25510318][-1.90879862 -1.39751717 -1.28164607 -1.47462154 -2.02556852]]
[[ 2.95163374 8.13773746 3.98614535 4.70877437 1.15426545][ 1.29812896 2.70610008 1.99379484 1.63306602 0.33414891][-0.07629869 0.59687469 0.53546852 0.22084185 -0.52576804][-1.04766877 -0.51304803 -0.43216143 -0.66173497 -1.25533931][-1.90912622 -1.39780093 -1.28190174 -1.47486102 -2.02580091]]
[[ 2.95130513 8.1374753 3.98589272 4.70854248 1.15402502][ 1.29782798 2.70584388 1.99356101 1.63284621 0.33393172][-0.07658458 0.59662795 0.53524561 0.22063248 -0.52597221][-1.04794621 -0.51328814 -0.43237783 -0.66193778 -1.2555363 ][-1.90939991 -1.39803791 -1.28211516 -1.47506085 -2.02599477]]
[[ 2.95103055 8.13725635 3.98568182 4.70834898 1.15382442][ 1.29757651 2.70562991 1.9933658 1.63266277 0.33375051][-0.07682342 0.59642189 0.53505953 0.22045777 -0.52614255][-1.04817798 -0.51348866 -0.43255847 -0.66210701 -1.25570064][-1.90962853 -1.39823581 -1.28229332 -1.47522759 -2.0261565 ]]
[[ 2.95080114 8.13707351 3.98550578 4.70818752 1.15365704][ 1.29736643 2.70545122 1.99320284 1.63250969 0.33359931][-0.07702294 0.59624981 0.53490419 0.22031197 -0.52628468][-1.04837158 -0.51365611 -0.43270926 -0.66224824 -1.25583776][-1.9098195 -1.39840107 -1.28244203 -1.47536673 -2.02629143]]
[[ 2.9506095 8.13692082 3.98535881 4.70805277 1.15351739][ 1.29719095 2.70530199 1.9930668 1.63238194 0.33347314][-0.0771896 0.59610611 0.53477452 0.2201903 -0.52640328][-1.04853328 -0.51379594 -0.43283513 -0.6623661 -1.25595218][-1.909979 -1.39853906 -1.28256616 -1.47548285 -2.02640403]]
[[ 2.95044942 8.13679332 3.98523614 4.70794032 1.15340085][ 1.29704437 2.70517739 1.99295325 1.63227533 0.33336786][-0.07732879 0.59598611 0.53466627 0.22008875 -0.52650224][-1.04866833 -0.51391269 -0.4329402 -0.66246446 -1.25604765][-1.91011221 -1.39865428 -1.28266978 -1.47557975 -2.02649798]]
[[ 2.95031572 8.13668686 3.98513373 4.70784648 1.15330361][ 1.29692196 2.70507334 1.99285845 1.63218635 0.33328 ][-0.07744504 0.59588592 0.53457591 0.220004 -0.52658483][-1.04878111 -0.51401017 -0.43302791 -0.66254655 -1.25612733][-1.91022346 -1.39875048 -1.28275628 -1.47566063 -2.02657638]]
[[ 2.95020406 8.13659797 3.98504824 4.70776816 1.15322246][ 1.29681972 2.70498646 1.99277932 1.63211208 0.33320669][-0.07754211 0.59580227 0.53450048 0.21993327 -0.52665374][-1.04887529 -0.51409157 -0.43310113 -0.66261506 -1.25619381][-1.91031635 -1.39883081 -1.28282849 -1.47572812 -2.02664181]]
[[ 2.95011081 8.13652375 3.98497688 4.70770279 1.15315474][ 1.29673435 2.70491393 1.99271326 1.6320501 0.3331455 ][-0.07762318 0.59573242 0.53443751 0.21987423 -0.52671126][-1.04895394 -0.51415953 -0.43316225 -0.66267224 -1.2562493 ][-1.91039393 -1.39889787 -1.28288877 -1.47578446 -2.02669641]]
[[ 2.95003293 8.13646178 3.98491731 4.70764823 1.15309822][ 1.29666306 2.70485337 1.99265811 1.63199837 0.33309444][-0.07769087 0.59567411 0.53438495 0.21982496 -0.52675926][-1.04901961 -0.51421627 -0.43321327 -0.66271997 -1.25629561][-1.9104587 -1.39895386 -1.28293908 -1.47583148 -2.02674198]]
[[ 2.94996791 8.13641005 3.98486758 4.7076027 1.15305106][ 1.29660353 2.7048028 1.99261208 1.63195519 0.33305182][-0.07774739 0.59562542 0.53434107 0.21978383 -0.52679933][-1.04907444 -0.51426363 -0.43325586 -0.6627598 -1.25633426][-1.91051278 -1.39900061 -1.28298108 -1.47587073 -2.02678001]]
[[ 2.94991361 8.13636685 3.98482607 4.70756469 1.15301169][ 1.29655383 2.70476059 1.99257366 1.63191915 0.33301625][-0.07779458 0.59558477 0.53430444 0.2197495 -0.52683276][-1.04912022 -0.51430318 -0.43329142 -0.66279305 -1.25636652][-1.91055794 -1.39903963 -1.28301614 -1.47590349 -2.02681176]]
[[ 2.94986828 8.13633079 3.98479142 4.70753297 1.15297884][ 1.29651233 2.70472535 1.99254158 1.63188907 0.33298656][-0.07783398 0.59555084 0.53427386 0.21972085 -0.52686067][-1.04915845 -0.5143362 -0.43332109 -0.66282081 -1.25639345][-1.91059564 -1.39907221 -1.28304541 -1.47593083 -2.02683825]]
[[ 2.94983043 8.13630068 3.9847625 4.70750649 1.15295141][ 1.29647768 2.70469593 1.99251481 1.63186396 0.33296179][-0.07786688 0.59552251 0.53424834 0.21969694 -0.52688396][-1.04919036 -0.51436376 -0.43334587 -0.66284397 -1.25641592][-1.91062712 -1.39909941 -1.28306984 -1.47595365 -2.02686037]]
[[ 2.94979882 8.13627555 3.98473835 4.70748439 1.15292853][ 1.29644875 2.70467136 1.99249245 1.631843 0.3329411 ][-0.07789435 0.59549886 0.53422704 0.21967697 -0.52690341][-1.04921701 -0.51438677 -0.43336655 -0.66286331 -1.25643467][-1.9106534 -1.39912212 -1.28309024 -1.4759727 -2.02687882]]
[[ 2.94977244 8.13625457 3.9847182 4.70746595 1.15290942][ 1.2964246 2.70465086 1.9924738 1.63182551 0.33292384][-0.07791728 0.59547911 0.53420925 0.21966031 -0.52691963][-1.04923925 -0.51440598 -0.43338381 -0.66287945 -1.25645033][-1.91067534 -1.39914108 -1.28310726 -1.4759886 -2.02689423]]
[[ 2.94975041 8.13623705 3.98470137 4.70745055 1.15289348][ 1.29640443 2.70463374 1.99245822 1.63181091 0.33290943][-0.07793642 0.59546263 0.5341944 0.2196464 -0.52693318][-1.04925782 -0.51442202 -0.43339822 -0.66289292 -1.2564634 ][-1.91069365 -1.3991569 -1.28312147 -1.47600188 -2.02690709]]
[[ 2.94973202 8.13622243 3.98468733 4.70743769 1.15288017][ 1.2963876 2.70461945 1.99244522 1.63179872 0.33289741][-0.0779524 0.59544887 0.53418201 0.21963479 -0.52694449][-1.04927333 -0.51443541 -0.43341025 -0.66290417 -1.25647431][-1.91070895 -1.39917011 -1.28313334 -1.47601296 -2.02691782]]
[[ 2.94971666 8.13621022 3.9846756 4.70742697 1.15286906][ 1.29637354 2.70460752 1.99243437 1.63178854 0.33288737][-0.07796575 0.59543738 0.53417167 0.2196251 -0.52695392][-1.04928627 -0.51444658 -0.43342029 -0.66291355 -1.25648341][-1.91072171 -1.39918114 -1.28314324 -1.4760222 -2.02692678]]
[[ 2.94970385 8.13620003 3.98466582 4.70741801 1.15285979][ 1.29636181 2.70459756 1.99242531 1.63178005 0.33287899][-0.07797688 0.5954278 0.53416303 0.21961701 -0.5269618 ][-1.04929708 -0.51445591 -0.43342868 -0.66292139 -1.25649101][-1.91073237 -1.39919035 -1.28315151 -1.47602992 -2.02693426]]
[[ 2.94969314 8.13619152 3.98465765 4.70741054 1.15285205][ 1.29635202 2.70458924 1.99241774 1.63177296 0.33287199][-0.07798618 0.59541979 0.53415582 0.21961026 -0.52696838][-1.0493061 -0.5144637 -0.43343567 -0.66292793 -1.25649736][-1.91074127 -1.39919803 -1.28315841 -1.47603637 -2.02694051]]
[[ 2.94968421 8.13618442 3.98465083 4.7074043 1.15284559][ 1.29634384 2.7045823 1.99241143 1.63176705 0.33286616][-0.07799395 0.59541311 0.5341498 0.21960462 -0.52697386][-1.04931363 -0.5144702 -0.43344151 -0.66293339 -1.25650265][-1.91074869 -1.39920445 -1.28316417 -1.47604175 -2.02694572]]
[[ 2.94967675 8.13617849 3.98464513 4.70739909 1.15284019][ 1.29633701 2.70457651 1.99240616 1.63176211 0.33286128][-0.07800043 0.59540753 0.53414478 0.21959992 -0.52697845][-1.04931991 -0.51447563 -0.43344639 -0.66293795 -1.25650707][-1.91075489 -1.39920981 -1.28316897 -1.47604624 -2.02695007]]
[[ 2.94967053 8.13617354 3.98464038 4.70739474 1.15283569][ 1.29633132 2.70457167 1.99240176 1.63175798 0.33285722][-0.07800584 0.59540287 0.53414059 0.21959599 -0.52698227][-1.04932516 -0.51448016 -0.43345046 -0.66294175 -1.25651076][-1.91076007 -1.39921428 -1.28317299 -1.47604998 -2.0269537 ]]
[[ 2.94966533 8.13616941 3.98463642 4.70739111 1.15283193][ 1.29632656 2.70456764 1.99239809 1.63175454 0.33285382][-0.07801035 0.59539898 0.53413709 0.21959271 -0.52698546][-1.04932954 -0.51448394 -0.43345386 -0.66294493 -1.25651384][-1.91076439 -1.39921801 -1.28317634 -1.47605311 -2.02695673]]
[[ 2.94966099 8.13616596 3.9846331 4.70738808 1.1528288 ][ 1.29632259 2.70456426 1.99239502 1.63175167 0.33285099][-0.07801412 0.59539574 0.53413416 0.21958997 -0.52698813][-1.0493332 -0.5144871 -0.4334567 -0.66294758 -1.25651641][-1.910768 -1.39922113 -1.28317914 -1.47605572 -2.02695926]]
[[ 2.94965737 8.13616308 3.98463034 4.70738555 1.15282618][ 1.29631927 2.70456145 1.99239247 1.63174927 0.33284862][-0.07801727 0.59539303 0.53413172 0.21958769 -0.52699035][-1.04933625 -0.51448973 -0.43345906 -0.66294979 -1.25651856][-1.91077101 -1.39922373 -1.28318147 -1.4760579 -2.02696137]]
[[ 2.94965435 8.13616068 3.98462803 4.70738344 1.15282399][ 1.2963165 2.7045591 1.99239033 1.63174727 0.33284664][-0.0780199 0.59539077 0.53412969 0.21958578 -0.52699221][-1.0493388 -0.51449193 -0.43346104 -0.66295164 -1.25652035][-1.91077352 -1.3992259 -1.28318342 -1.47605972 -2.02696313]]
[[ 2.94965182 8.13615867 3.98462611 4.70738168 1.15282217][ 1.29631419 2.70455714 1.99238855 1.6317456 0.332845 ][-0.07802209 0.59538888 0.53412799 0.21958419 -0.52699376][-1.04934093 -0.51449377 -0.43346269 -0.66295318 -1.25652184][-1.91077562 -1.39922771 -1.28318505 -1.47606124 -2.0269646 ]]
[[ 2.94964971 8.136157 3.9846245 4.70738021 1.15282065][ 1.29631227 2.70455551 1.99238706 1.6317442 0.33284362][-0.07802392 0.59538731 0.53412657 0.21958286 -0.52699505][-1.0493427 -0.5144953 -0.43346407 -0.66295447 -1.25652309][-1.91077737 -1.39922922 -1.28318641 -1.47606251 -2.02696583]]
[[ 2.94964796 8.1361556 3.98462316 4.70737898 1.15281938][ 1.29631066 2.70455414 1.99238582 1.63174304 0.33284247][-0.07802545 0.59538599 0.53412539 0.21958175 -0.52699613][-1.04934419 -0.51449658 -0.43346522 -0.66295554 -1.25652413][-1.91077883 -1.39923049 -1.28318754 -1.47606357 -2.02696686]]
[[ 2.94964649 8.13615443 3.98462204 4.70737795 1.15281831][ 1.29630931 2.704553 1.99238478 1.63174207 0.33284151][-0.07802673 0.59538489 0.5341244 0.21958083 -0.52699703][-1.04934542 -0.51449765 -0.43346618 -0.66295644 -1.256525 ][-1.91078006 -1.39923154 -1.28318849 -1.47606445 -2.02696771]]
[[ 2.94964526 8.13615346 3.9846211 4.7073771 1.15281743][ 1.29630819 2.70455205 1.99238391 1.63174125 0.33284071][-0.07802779 0.59538398 0.53412357 0.21958005 -0.52699779][-1.04934646 -0.51449854 -0.43346698 -0.66295719 -1.25652573][-1.91078107 -1.39923242 -1.28318928 -1.47606519 -2.02696843]]
[[ 2.94964424 8.13615264 3.98462032 4.70737638 1.15281669][ 1.29630725 2.70455125 1.99238319 1.63174058 0.33284004][-0.07802868 0.59538321 0.53412288 0.21957941 -0.52699841][-1.04934732 -0.51449929 -0.43346765 -0.66295781 -1.25652634][-1.91078192 -1.39923315 -1.28318994 -1.47606581 -2.02696903]]
[[ 2.94964338 8.13615197 3.98461967 4.70737579 1.15281607][ 1.29630647 2.70455059 1.99238259 1.63174001 0.33283949][-0.07802942 0.59538257 0.53412231 0.21957887 -0.52699894][-1.04934804 -0.51449991 -0.4334682 -0.66295833 -1.25652684][-1.91078264 -1.39923377 -1.28319049 -1.47606632 -2.02696952]]
[[ 2.94964267 8.1361514 3.98461912 4.70737529 1.15281556][ 1.29630582 2.70455003 1.99238208 1.63173954 0.33283902][-0.07803004 0.59538204 0.53412183 0.21957842 -0.52699938][-1.04934864 -0.51450043 -0.43346867 -0.66295877 -1.25652726][-1.91078323 -1.39923428 -1.28319095 -1.47606675 -2.02696994]]
[[ 2.94964208 8.13615093 3.98461867 4.70737487 1.15281513][ 1.29630528 2.70454957 1.99238166 1.63173914 0.33283863][-0.07803056 0.59538159 0.53412143 0.21957805 -0.52699974][-1.04934914 -0.51450086 -0.43346906 -0.66295913 -1.25652762][-1.91078372 -1.39923471 -1.28319133 -1.47606711 -2.02697029]]
[[ 2.94964158 8.13615053 3.98461829 4.70737453 1.15281477][ 1.29630482 2.70454919 1.99238131 1.63173882 0.33283831][-0.07803099 0.59538122 0.53412109 0.21957773 -0.52700005][-1.04934956 -0.51450122 -0.43346938 -0.66295943 -1.25652791][-1.91078414 -1.39923506 -1.28319165 -1.47606741 -2.02697058]]
[[ 2.94964116 8.1361502 3.98461797 4.70737424 1.15281447][ 1.29630444 2.70454886 1.99238102 1.63173854 0.33283804][-0.07803135 0.59538091 0.53412081 0.21957747 -0.5270003 ][-1.04934991 -0.51450153 -0.43346965 -0.66295969 -1.25652816][-1.91078448 -1.39923536 -1.28319192 -1.47606766 -2.02697082]]
[[ 2.94964082 8.13614993 3.98461771 4.707374 1.15281422][ 1.29630412 2.7045486 1.99238077 1.63173831 0.33283781][-0.07803165 0.59538065 0.53412058 0.21957725 -0.52700051][-1.0493502 -0.51450178 -0.43346988 -0.6629599 -1.25652836][-1.91078477 -1.39923561 -1.28319214 -1.47606787 -2.02697102]]
[[ 2.94964053 8.1361497 3.98461749 4.7073738 1.15281401][ 1.29630386 2.70454837 1.99238057 1.63173812 0.33283762][-0.0780319 0.59538044 0.53412039 0.21957707 -0.52700069][-1.04935045 -0.51450199 -0.43347007 -0.66296008 -1.25652853][-1.91078501 -1.39923582 -1.28319233 -1.47606804 -2.02697119]]
[[ 2.94964029 8.1361495 3.98461731 4.70737363 1.15281383][ 1.29630364 2.70454818 1.9923804 1.63173796 0.33283746][-0.07803211 0.59538026 0.53412022 0.21957692 -0.52700084][-1.04935065 -0.51450216 -0.43347023 -0.66296022 -1.25652868][-1.91078521 -1.39923599 -1.28319248 -1.47606818 -2.02697133]]
[[ 2.94964009 8.13614934 3.98461715 4.70737349 1.15281369][ 1.29630345 2.70454803 1.99238026 1.63173783 0.33283733][-0.07803229 0.5953801 0.53412009 0.21957679 -0.52700096][-1.04935082 -0.51450231 -0.43347036 -0.66296035 -1.2565288 ][-1.91078538 -1.39923614 -1.28319261 -1.47606831 -2.02697145]]
[[ 2.94963992 8.13614921 3.98461702 4.70737337 1.15281357][ 1.2963033 2.7045479 1.99238014 1.63173772 0.33283722][-0.07803243 0.59537998 0.53411997 0.21957669 -0.52700107][-1.04935096 -0.51450243 -0.43347047 -0.66296045 -1.2565289 ][-1.91078552 -1.39923626 -1.28319272 -1.47606841 -2.02697154]]
[[ 2.94963978 8.1361491 3.98461692 4.70737327 1.15281347][ 1.29630317 2.70454779 1.99238004 1.63173762 0.33283713][-0.07803255 0.59537987 0.53411988 0.2195766 -0.52700115][-1.04935108 -0.51450253 -0.43347056 -0.66296053 -1.25652898][-1.91078563 -1.39923636 -1.28319281 -1.47606849 -2.02697163]]
[[ 2.94963966 8.13614901 3.98461683 4.70737319 1.15281338][ 1.29630307 2.7045477 1.99237996 1.63173755 0.33283705][-0.07803266 0.59537979 0.5341198 0.21957652 -0.52700122][-1.04935118 -0.51450262 -0.43347064 -0.66296061 -1.25652905][-1.91078573 -1.39923644 -1.28319289 -1.47606856 -2.02697169]]
[[ 2.94963956 8.13614893 3.98461675 4.70737312 1.15281331][ 1.29630298 2.70454762 1.99237989 1.63173748 0.33283699][-0.07803274 0.59537971 0.53411973 0.21957646 -0.52700128][-1.04935126 -0.51450269 -0.4334707 -0.66296067 -1.25652911][-1.91078581 -1.39923651 -1.28319295 -1.47606862 -2.02697175]]
[[ 2.94963948 8.13614886 3.98461669 4.70737306 1.15281325][ 1.2963029 2.70454756 1.99237983 1.63173743 0.33283694][-0.07803281 0.59537965 0.53411968 0.21957641 -0.52700133][-1.04935133 -0.51450275 -0.43347075 -0.66296072 -1.25652915][-1.91078588 -1.39923657 -1.283193 -1.47606867 -2.0269718 ]]
[[ 2.94963941 8.13614881 3.98461664 4.70737302 1.1528132 ][ 1.29630284 2.7045475 1.99237978 1.63173738 0.33283689][-0.07803287 0.5953796 0.53411963 0.21957637 -0.52700138][-1.04935139 -0.5145028 -0.4334708 -0.66296076 -1.25652919][-1.91078594 -1.39923662 -1.28319304 -1.47606871 -2.02697184]]
[[ 2.94963936 8.13614876 3.9846166 4.70737298 1.15281316][ 1.29630279 2.70454746 1.99237974 1.63173734 0.33283685][-0.07803292 0.59537956 0.5341196 0.21957633 -0.52700141][-1.04935143 -0.51450284 -0.43347084 -0.66296079 -1.25652923][-1.91078598 -1.39923666 -1.28319308 -1.47606874 -2.02697187]]
[[ 2.94963931 8.13614873 3.98461656 4.70737294 1.15281313][ 1.29630274 2.70454742 1.99237971 1.63173731 0.33283682][-0.07803296 0.59537952 0.53411956 0.2195763 -0.52700144][-1.04935147 -0.51450288 -0.43347087 -0.66296082 -1.25652926][-1.91078602 -1.39923669 -1.28319311 -1.47606877 -2.0269719 ]]
[[ 2.94963927 8.1361487 3.98461653 4.70737292 1.1528131 ][ 1.29630271 2.70454739 1.99237968 1.63173729 0.3328368 ][-0.078033 0.59537949 0.53411954 0.21957628 -0.52700147][-1.04935151 -0.5145029 -0.43347089 -0.66296085 -1.25652928][-1.91078606 -1.39923672 -1.28319314 -1.4760688 -2.02697192]]
[[ 2.94963924 8.13614867 3.9846165 4.70737289 1.15281307][ 1.29630268 2.70454737 1.99237966 1.63173727 0.33283678][-0.07803303 0.59537947 0.53411951 0.21957626 -0.52700149][-1.04935154 -0.51450293 -0.43347091 -0.66296087 -1.2565293 ][-1.91078608 -1.39923675 -1.28319316 -1.47606882 -2.02697194]]
[[ 2.94963921 8.13614865 3.98461648 4.70737287 1.15281305][ 1.29630265 2.70454735 1.99237964 1.63173725 0.33283676][-0.07803305 0.59537945 0.5341195 0.21957624 -0.5270015 ][-1.04935156 -0.51450295 -0.43347093 -0.66296088 -1.25652932][-1.91078611 -1.39923677 -1.28319318 -1.47606883 -2.02697196]]
[[ 2.94963919 8.13614863 3.98461646 4.70737286 1.15281304][ 1.29630263 2.70454733 1.99237962 1.63173723 0.33283674][-0.07803307 0.59537943 0.53411948 0.21957622 -0.52700152][-1.04935158 -0.51450297 -0.43347095 -0.6629609 -1.25652933][-1.91078613 -1.39923678 -1.28319319 -1.47606885 -2.02697197]]
[[ 2.94963917 8.13614861 3.98461645 4.70737284 1.15281302][ 1.29630261 2.70454731 1.99237961 1.63173722 0.33283673][-0.07803309 0.59537942 0.53411947 0.21957621 -0.52700153][-1.04935159 -0.51450298 -0.43347096 -0.66296091 -1.25652934][-1.91078614 -1.3992368 -1.2831932 -1.47606886 -2.02697198]]
[[ 2.94963915 8.1361486 3.98461644 4.70737283 1.15281301][ 1.2963026 2.7045473 1.9923796 1.63173721 0.33283672][-0.0780331 0.5953794 0.53411946 0.2195762 -0.52700154][-1.04935161 -0.51450299 -0.43347097 -0.66296092 -1.25652935][-1.91078615 -1.39923681 -1.28319321 -1.47606887 -2.02697199]]
[[ 2.94963914 8.13614859 3.98461643 4.70737282 1.152813 ][ 1.29630259 2.70454729 1.99237959 1.6317372 0.33283671][-0.07803311 0.59537939 0.53411945 0.21957619 -0.52700155][-1.04935162 -0.514503 -0.43347098 -0.66296093 -1.25652936][-1.91078617 -1.39923682 -1.28319322 -1.47606888 -2.026972 ]]
[[ 2.94963913 8.13614858 3.98461642 4.70737282 1.15281299][ 1.29630258 2.70454728 1.99237958 1.63173719 0.3328367 ][-0.07803312 0.59537939 0.53411944 0.21957619 -0.52700155][-1.04935163 -0.51450301 -0.43347099 -0.66296093 -1.25652936][-1.91078618 -1.39923683 -1.28319323 -1.47606888 -2.02697201]]
[[ 2.94963912 8.13614857 3.98461641 4.70737281 1.15281299][ 1.29630257 2.70454727 1.99237957 1.63173719 0.3328367 ][-0.07803313 0.59537938 0.53411943 0.21957618 -0.52700156][-1.04935164 -0.51450302 -0.43347099 -0.66296094 -1.25652937][-1.91078618 -1.39923683 -1.28319324 -1.47606889 -2.02697201]]
[[ 2.94963911 8.13614857 3.98461641 4.7073728 1.15281298][ 1.29630256 2.70454727 1.99237957 1.63173718 0.33283669][-0.07803314 0.59537937 0.53411943 0.21957618 -0.52700156][-1.04935164 -0.51450302 -0.433471 -0.66296094 -1.25652937][-1.91078619 -1.39923684 -1.28319324 -1.47606889 -2.02697202]]
[[ 2.9496391 8.13614856 3.9846164 4.7073728 1.15281298][ 1.29630255 2.70454726 1.99237956 1.63173718 0.33283669][-0.07803314 0.59537937 0.53411942 0.21957617 -0.52700157][-1.04935165 -0.51450303 -0.433471 -0.66296095 -1.25652938][-1.91078619 -1.39923684 -1.28319325 -1.4760689 -2.02697202]]
[[ 2.9496391 8.13614856 3.9846164 4.7073728 1.15281297][ 1.29630255 2.70454726 1.99237956 1.63173717 0.33283669][-0.07803315 0.59537936 0.53411942 0.21957617 -0.52700157][-1.04935165 -0.51450303 -0.43347101 -0.66296095 -1.25652938][-1.9107862 -1.39923685 -1.28319325 -1.4760689 -2.02697202]]
[[ 2.94963909 8.13614855 3.98461639 4.70737279 1.15281297][ 1.29630254 2.70454725 1.99237955 1.63173717 0.33283668][-0.07803315 0.59537936 0.53411942 0.21957616 -0.52700157][-1.04935166 -0.51450303 -0.43347101 -0.66296095 -1.25652938][-1.9107862 -1.39923685 -1.28319325 -1.4760689 -2.02697203]]
[[ 2.94963909 8.13614855 3.98461639 4.70737279 1.15281297][ 1.29630254 2.70454725 1.99237955 1.63173717 0.33283668][-0.07803315 0.59537936 0.53411941 0.21957616 -0.52700158][-1.04935166 -0.51450304 -0.43347101 -0.66296096 -1.25652939][-1.91078621 -1.39923685 -1.28319325 -1.47606891 -2.02697203]]
[[ 2.94963909 8.13614855 3.98461639 4.70737279 1.15281297][ 1.29630254 2.70454725 1.99237955 1.63173717 0.33283668][-0.07803316 0.59537936 0.53411941 0.21957616 -0.52700158][-1.04935166 -0.51450304 -0.43347101 -0.66296096 -1.25652939][-1.91078621 -1.39923685 -1.28319326 -1.47606891 -2.02697203]]
贪心策略–找Gt最大的下一步s’–v最大
-
策略提升
- 根据当前的估值函数,寻找更优的策略,珠宝找到最优策略
- 依据π的估值函数vπ,得到最优策略π′依据\pi的估值函数v_\pi,得到最优策略\pi'依据π的估值函数vπ,得到最优策略π′
- 提升方法
- 看qπ(s,a)是否大于vπ(s)(这是下面定理的特例看q_\pi(s,a)是否大于v_\pi(s)(这是下面定理的特例看qπ(s,a)是否大于vπ(s)(这是下面定理的特例`
- 定理
- 如果qπ(s,π′(s))≥vπ(s),则π′比π好,vπ′(s)≥vπ(s)q_\pi(s,\pi'(s))\geq v_\pi(s),则\pi'比\pi好,v_\pi'(s) \geq v\pi(s)qπ(s,π′(s))≥vπ(s),则π′比π好,vπ′(s)≥vπ(s)
- 如果qπ(s,π′(s))≥vπ(s),则π′比π好,vπ′(s)≥vπ(s)q_\pi(s,\pi'(s))\geq v_\pi(s),则\pi'比\pi好,v_\pi'(s) \geq v\pi(s)qπ(s,π′(s))≥vπ(s),则π′比π好,vπ′(s)≥vπ(s)
- 根据当前的估值函数,寻找更优的策略,珠宝找到最优策略
-
循环进行–》策略迭代
-
策略估值
-
策略迭代=策略估值+策略提升
- 贝尔曼方程
-
估值迭代=不精确估值(一轮估值后)+策略提升
- 贝尔曼最优方程
-
可否在不精确估值情况下,策略提升?——精确估值耗费很长时间
- 可以——估值迭代
-
策略迭代
-
估值迭代
-
比较
-
动态规划
- 自举的方法(无中生有
- 把贝尔曼方程变成更新规则
- 优点:计算效率高
- 缺点: 要知道环境的完整模型
蒙特卡罗方法——不知道环境完整模型情况下
-
从真实或模拟的经验中计算状态(行动)估值函数
-
不需要知道完整的模型
-
采样
-
回到原状态的就不要了
-
基于蒙特卡罗的方法的策略迭代
- 仅有状态估值无法得出策略
- 蒙特卡罗得到qπ(s,a)蒙特卡罗得到q_\pi(s,a)蒙特卡罗得到qπ(s,a),贪心得到策略
-
优点:不同状态的估值在计算时独立(不依赖于自举)
- 适用于模型未知或环境模型复杂
- 收敛性由大数经历决定
-
缺点:部分状态行为再蒙特卡罗模拟中不出现
- 解决方案:exploring start :每个“状态-行为”对都以一定的概率作为模拟的起始点(残局)
- 不要exploring start了
- 其他方法——平衡开采和探索
- on-policy
- 每个状态都进行探索:eg:𝜺贪心
- 1−ϵ+ϵA(s)贪心;以ϵA(s)选择费贪心1-\epsilon+\frac{\epsilon}{A(s)}贪心;以\frac{\epsilon}{A(s)}选择费贪心1−ϵ+A(s)ϵ贪心;以A(s)ϵ选择费贪心
- 缺点:最终得到的最优策略仅仅是ϵ\epsilonϵ最优策略(与最优解还有个小误差)
- 每个状态都进行探索:eg:𝜺贪心
- off-policy
- 使用两个策略:
- 目标策略π\piπ,和
- 待优化策略
- 贪心
- 行为策略b
- 保证每个状态对所有行为进行探索的可能
- 目标策略π\piπ,和
- 使用两个策略:
- on-policy
2.1 on-policy蒙特卡罗
2.2 off-policy蒙特卡罗
时序差分方法
- 蒙特卡洛一定要模拟到最后吗
- 非平稳模拟
- 时序差分方法是强化学习中最核心的策略学习方法
- TD和蒙特卡洛方法的联系和区别
- 联系:都是从经验中学习
- 非平稳情形下的蒙特卡洛方法是TD的特例
- 区别:蒙特卡洛方法需要episode完整的信息,TD只需要episode的部分信息
- TD比蒙特卡罗快吧
- TD和动态规划方法的联系和区别
- 联系:TD和动态规划方法都采用自举的方法
- 区别:动态规划方法依赖于完整的环境模型进行估计,TD依赖于经验进行估计
- 从一个猜测学习一个猜测
- 保证他学对了:多走了一步
- 收敛
- 在线的从经验中进行策略学习
- 直接学习行为估值函数完成策略学习
- 适用于状态和行为空间比较小的问题