英伟达、AMD 高端芯片断供,国产芯片如何迅速崛起

c056e812d9b574cd8a86a5bd9e9ed8e8.jpeg

来源:大数据文摘转载自AI科技大本营

整理:苏宓

出品:CSDN

8 月 31 日,据外媒 Protocol、路透社等多家报道,美国开始对出口人工智能相关应用所需的先进芯片施加新的限制,其中 AMD、NVIDIA(英伟达)等半导体巨头受到了直接的影响。

英伟达的 A100、H100、A100X 均被限制

英伟达在周三披露的一份文件中证实了这一消息的真实性,其表示,"2022 年 8 月 26 日,美国政府(或称 USG)通知 NVIDIA,USG 对公司 A100 和即将推出的 H100 集成电路今后向中国(包括香港)和俄罗斯的任何出口提出了新的许可要求,立即生效。"

7daed6f6d722ebab8800f463bd125be5.jpeg

与此同时,「DGX 及其他任何采用 A100 或 H100 集成电路和 A100X 的系统也在新的许可证要求范围内。许可证的要求范围还会覆盖到未来的一些 NVIDIA 集成电路产品,其中只要新品的一切性能等于或高于 A100,以及包含这些电路的任何系统,都要遵守此次许可。」

a3b8f9e77e8010017198a1f0dadd5208.jpeg

毫无疑问,这一出口限制会直接影响到 A100 和 H100  图形处理单元产品的销售,英伟达的股价应声下跌 6.5%。

几天前,英伟达发表一份声明预计第三季度营业收入约为 59 亿美元,而针对此次突发性事件的影响,本季度英伟达在中国的潜在销售可能会损失 4 亿美元。另一方面,英伟达认为这也可能会阻止 H100 的开发进程,进一步影响该公司的数据中心产品的销售。

剑指高端 GPU

A100 是英伟达于 2020 年发布的 GPU 旗舰产品,基于 Ampere 架构。彼时 英伟达 CEO 黄仁勋表示,A100 采用的是先进的台积电(TSMC)7nm 工艺,拥有 540 亿个晶体管,其性能相比前代产品提升了 20 倍,此外 GPU 的最大功率达到 400W。这款作为通用型工作负载加速器,主要应用在 AI 领域。

另一款受影响的产品 H100,作为 A100 的替代者,在设计方面采用了最先进的台积电 4nm 工艺、拥有 800 亿个晶体管,可以加快 AI、HPC、内存带宽、互连和通信的发展,甚至能够实现每秒近 5 兆字节的外部连接。在性能方面,H100 采用了自然语言处理的标准模型,即新的 Transformer Engine。H100 加速器可以将这些网络的速度提高到上一代的 6 倍而不损失精度。

此外,H100 是第一个支持 PCIe Gen5 的 GPU,也是第一个利用 HBM3 的GPU,实现了 3TB/s 的内存带宽。20 个 H100 GPU 可以维持相当于整个世界的互联网流量。

英伟达的 A100X 和 H100 提供比 A100 更高的性能,几款都属于高端的 GPU 产品,此次断供也带来了极大的影响。"新的许可证要求可能会影响公司及时完成 H100 的开发或支持 A100 的现有客户的能力,并可能要求公司将某些业务从中国过渡出去," 英伟达表示。

同时,据 CNBC 报道,英伟达称“公司正在与美国政府接触,并正在为公司的内部开发和支持活动寻求豁免。我们正在与中国的客户合作,用替代产品满足他们计划或未来的购买。在替代产品不够的情况下,可能会申请许可证。”

这款替代产品极有可能是 A30,不过 A30 的性能比 A100 低得多,而且不提供类似的可扩展性。尽管如此,在人工智能、分析或高性能计算方面,A30 会是一个备选。

AMD 也在列

除了英伟达之外,也有媒体报道称 AMD 也收到了来自美国的类似通知,涉及其适合执行 AI 相关计算的 GPU 系列,AMD 的 MI200 产品波及其中。不过相较于英伟达,基于 AMD 在中国的销售业务规模,它受到的影响要小一些。

启示录

内容描述.

这也不禁让我们想起不久之前,美国商务部以“保证这些对美国国家安全至关重要的技术不被恶意利用”为由,宣布于 8 月 15 日生效的新规定:

对设计 GAAFET(全栅场效应晶体管)结构集成电路所必需的 ECAD(EDA)软件、金刚石和氧化镓为代表的超宽禁带半导体材料、燃气涡轮发动机使用的压力增益燃烧(PGC)等四项技术实施新的出口管制。

ebdd644e9f7a69825168034dc69977b7.jpeg

毋庸置疑,当前部分芯片的断供为我们敲响了警钟。近年来,其实不少人也意识到了芯片自研的重要性。根据《2021-2022 中国开发者调查报告》显示,芯片创业团队迅速崛起,过去一年小于 10 人的芯片创业团队占比超过 50%。

2cda9cdc3606f4a2a267559348e12015.jpeg

不过,作为基础设施的重要一环,盲目的投入势必会丢失方向,那又该如何在国产芯片行业实现突破?上海交通大学计算机科学与工程系教授梁晓峣也曾在《国产GPGPU如何赶超国外?这3条路最有希望》一文中剖析了当前这个时代“好用”的芯片成长之路:

这是一个非常好的时代,芯片产业总是由先进工艺推动的,我们可以乐观的预期未来推动先进工艺的未必是美国的英特尔或英伟达,或许可能是中国的某家高科技公司呢?但另一方面,我们也必须看到英伟达研发一款新品的投入是以十亿美金计,如果一个芯片公司的销售达不到这个规模,肯定是无法持续的。

当前海量的资本都疯狂的涌入这个赛道,而芯片是一个需要打持久战的行业,一旦收入无法跟上,或无法成长为某个赛道的头部,结局就可能很悲惨,即便是“飞起来的猪”也可能很快掉下来。

我们必须理解市场需要的不是“好”的芯片,而是“好用”的芯片。所谓好的芯片就是绝对算力高、硬件指标高,这个相对容易做到。但是做到好用就很困难,做出来的芯片没办法把潜力发挥出来,这是目前AI芯片公司的通病。

还是以史为鉴,英伟达其实也是一步一步从不好用做到好用,走过了一个漫长的阶段。早期的GPU是很不好用的,没有什么人会用GPU编程,只有那些所谓的“极客”会考虑使用GPU,拼命把其中的算力榨取出来。可以说早期的GPU比现在的AI芯片更不好用。

这时候就需要有一批行业领袖和技术大咖挺身而出,代表性的人物包括UIUC的胡文美教授(Wen-mei Hwu),他们发明了CUDA,从此有了可以直接对GPU进行编程的语言,使得GPU的潜力得以充分发挥,从而真正走上了腾飞之路。又经过十年左右的发展,形成了一个非常强大的生态,可以支持各种各样的应用,丰富了高级语言的属性,能够支持更为复杂的模型和算法,并且逐步在很多行业形成垄断。

因此,芯片是一个需要不断积累的行业,而且独行未必会有一个良好的结果,只有众人拾柴方能让火焰高。中国工程院院士倪光南也曾在“第十七届开源中国开源世界高峰论坛”上呼吁,「建议我国在发展芯片产业时,要抓住开源发展的新潮流,抓住新一代科技革命和产业变革的发展机遇,用好开源的创新模式,结合我国举国体制和超大规模市场优势,聚焦开源绿色发展架构,发展中国芯片产业,大力发展壮大 RISC-V 产业生态。」

参考链接:

https://www.sec.gov/ix?doc=/Archives/edgar/data/0001045810/000104581022000146/nvda-20220826.htm

https://www.protocol.com/bulletins/nvidia-amd-ai-chips

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

e94b3dbef86666fb4d846e9f888ec803.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481644.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高文院士:AI将为芯片设计带来革命性改变

来源:中国电子报作者:姬晓婷9月1日,世界人工智能大会在上海举行。在芯片主题论坛上,中国工程院院士、鹏城实验室主任高文发表了题为“人工智能与EDA技术的前瞻性发展”的演讲。在高文看来,AI的应用将使芯片设计所需的时…

国科大prml11-降维

文章目录1.维度、特征与维度灾难维度特征维度灾难降维1 维度选择3.特征抽取3.1 预备知识3.2 线性模型3.2.1 多维缩放MDS3.2.2 线性降维的一般形式3.2.3 PCA主成分分析3.3 非线性模型3.3.1KPCA3.3.2流行学习(欧氏距离不能反映相似性)3.3.3 拉普拉斯特征映…

神经元模型:从离子通道到计算

导语本篇推文来自集智俱乐部的网站集智斑图的一篇路径《神经元模型:从离子通道到计算》,路径基于神经动力学模型读书会第一季臧蕴亮老师的分享整理而成。感兴趣的朋友可以结合本次分享的回放(回放链接https://campus.swarma.org/course/4433&…

国科大prml12-半监督学习

文章目录1.假设2. 自学习算法3.多视角学习3.1 协同训练(co-training)3.2 多视角学习4. 生成模型生成模型的例子4.2 GMM高斯混合模型4.2.1 EM算法用于GMM4.2.2减小风险的启发式4.3 聚类标签法(cluster-and-label)5. S3VMsTSVM5.2 学习算法SVMlightSVM^{li…

我国城市大脑首批三项标准的解读和专家评议

来源:远望智库预见未来我国城市大脑首批三项标准的解读与专家评议2022年9月1日,中国指挥与控制学会在京召开《城市大脑首批标准新闻发布会》正式发布《城市大脑 术语》、《城市大脑顶层规划和总体架构》;《城市大脑数字神经元基本规定》等三项…

谷歌新作:扩散模型背后的数学原理

来源:机器之心扩散模型背后的数学可是难倒了一批人。最近一段时间,AI 作画可谓是火的一塌糊涂。在你惊叹 AI 绘画能力的同时,可能还不知道的是,扩散模型在其中起了大作用。就拿热门模型 OpenAI 的 DALLE 2 来说,只需输…

国科大prml13-概率图(CRF,HMM)

文章目录1. 有向概率图模型(贝叶斯网络)1.1 概率分布1.2 表示1.3 条件独立性1.3.2 检验条件独立算法(贝叶斯球)2. 无向图模型(马尔科夫随机场)2.1 条件独立性2.2 概率分布2.3 表示无向图的条件独立性判断3.…

解读2022城市大脑首批三项标准(新版)

来源:远望智库预见未来解读2022城市大脑首批三项标准(新版)2022年9月1日,中国指挥与控制学会在京召开《城市大脑首批标准新闻发布会》正式发布《城市大脑 术语》、《城市大脑顶层规划和总体架构》;《城市大脑数字神经元…

单个细胞比科学家们以前认为的更聪明

来源:生物通细胞不仅根据生长因子等外部信号做出选择,还根据从细胞内部接收到的信息做出选择。每一天,人类都在为自己做选择。为了确保做出的决定适合当时的情况,这些决定通常需要结合一系列上下文线索。我们的感官为我们提供了做…

国科大prml14-独立于算法的机器学习(boosting/

文章目录1.哲学定理2. 重采样resampling2.1 bagging2.2 boosting2.3 adaboost2.3.2训练误差2.4 active learning3. 估计和比较分类器--交叉检验3.1 交叉验证5.adaboost在人脸检测上的应用5.1肤色模型5.2基于AdaBoost的快速人脸检测如何选择好的模型和评价模型?独立于…

解读2022中国城市大脑首批三项标准(新版)

来源:远望智库预见未来解读2022城市大脑首批三项标准(新版)2022年9月1日,中国指挥与控制学会在京召开《城市大脑首批标准新闻发布会》正式发布《城市大脑 术语》、《城市大脑顶层规划和总体架构》;《城市大脑数字神经元…

国科大prml15-基于浅层模型的计算机视觉--以人脸识别为例

文章目录2. 特征设计与提取过程q2.1 局部特征--SIFT2.2局部特征HOG3. 特征汇聚或变换h3.1BoVW视觉词袋模型3.2PCA4.以人脸识别为例4.1 主动统计模型4.1.1ASM(active shape model)4.1.2 AAM主动表观模型4.2人脸特征提取和比对特征脸Fisherfaces方法--本质(Fisher线性…

DeepMind又放大招!用大型语言模型实现可信推理,距离模型可解释性又近了一步...

来源:AI前线整理:核子可乐、冬梅可解释性,已经成为当今机器学习研究与开发领域最紧迫的难题之一。尽管目前的大规模语言模型(LM)已经展现出令人印象深刻的问答能力,但其固有的不透明性却导致人们无法理解模…

机器智能的未来

来源:混沌巡洋舰今年8月,马斯克发布推文称将会在10月31日,更新有关脑机接口的最新进展。近几年,人工智能方面的发展一直在取得突破和进展,人们对这方面的期待和研究却一直没有停止。比尔盖茨2021年度书单重磅推荐了《千…

国科大prml15-目标检测

改进R-CNN缩放图片SPPNet允许不同大小输入,SPP(pooling)归一化到相同尺寸Fast RCNN1.SPP->Rol pooling;2.改进边框校准Smooth L1 loss;3.全连接加速Truncated SVDFaster RCNNRPN直接生成候选框(共享CNN),anchor boxMask R-CNN实例分割&…

大模型铺天盖地出现后,计算机科学终成「自然科学」

来源:选自Communications of the ACM作者:Subbarao Kambhampati(美国人工智能学会前主席)编译:机器之心编辑:rome rome当部分人工智能正偏离其工程本源,AI 研究的方向变化,超出了我们…

Transformers 如何模仿大脑的某些部分

来源:ScienceAI编译:白菜叶了解大脑如何组织和访问空间信息「我们在哪里」,「拐角处有什么」,「如何到达那里」,这仍然是一项艰巨的挑战。该过程涉及从数百亿个神经元中调用整个记忆网络和存储的空间数据,每…

国科大prml-往年习题

文章目录1 模式识别过拟合欠拟合概率图概率图-独立性HMM哲学理论adaboost贝叶斯贝叶斯判别贝叶斯判别-正态分布贝叶斯估计贝叶斯决策朴素贝叶斯半监督无监督聚类GMMEM极大似然估计判别函数线性判别和非线性判别线性判别函数的数量(M分类感知机势函数法9.势函数法&am…

城市大脑已经几岁?城市大脑发展成熟度的年龄评估模型

说明:该论文由科学院研究团队刘颖、刘锋于2022年7月发表在《科技导报》第14期,是对城市大脑发展成熟度的探索研究,为构建城市大脑发展成熟度评估规范提供参考。根据研究团队建立的评估模型,进行初步评估,提出目前城市大…