阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

摘要

HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。

随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,例如引入红黑树的数据结构和扩容的优化等。本文结合JDK1.7和JDK1.8的区别,深入探讨HashMap的结构实现和功能原理。

简介

Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMap、Hashtable、LinkedHashMap和TreeMap,类继承关系如下图所示:

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

下面针对各个实现类的特点做一些说明:

(1) HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。

HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。

(2) Hashtable:Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

(3) LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

(4) TreeMap:TreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。

对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在创建后它的哈希值不会被改变。如果对象的哈希值发生变化,Map对象很可能就定位不到映射的位置了。

通过上面的比较,我们知道了HashMap是Java的Map家族中一个普通成员,鉴于它可以满足大多数场景的使用条件,所以是使用频度最高的一个。下文我们主要结合源码,从存储结构、常用方法分析、扩容以及安全性等方面深入讲解HashMap的工作原理。

内部实现

搞清楚HashMap,首先需要知道HashMap是什么,即它的存储结构-字段;其次弄明白它能干什么,即它的功能实现-方法。下面我们针对这两个方面详细展开讲解。

存储结构-字段

从结构实现来讲,HashMap是:数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下如所示。

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优点呢?

(1) 从源码可知,HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们来看Node[JDK1.8]是何物。

static class Nodeimplements Map.Entry{ final int hash; //用来定位数组索引位置 final K key; V value; Nodenext; //链表的下一个node Node(int hash, K key, V value, Nodenext) { ... } public final K getKey(){ ... } public final V getValue() { ... } public final String toString() { ... } public final int hashCode() { ... } public final V setValue(V newValue) { ... } public final boolean equals(Object o) { ... } } ,v>,v>,v>,v>

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。

(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:

 map.put("优知","IT进阶站");

系统将调用”优知”这个key的hashCode()方法得到其hashCode 值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算和取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。

如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。

在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:

 int threshold; // 所能容纳的key-value对极限 final float loadFactor; // 负载因子int modCount; int size;

首先,Node[] table的初始化长度length(默认值是16)Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。

size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。

在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。

这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。本文不再对红黑树展开讨论,想了解更多红黑树数据结构的工作原理。

功能实现-方法

HashMap的内部功能实现很多,本文主要从:

1).根据key获取哈希桶数组索引位置

2).put方法的详细执行

3).扩容过程三个具有代表性的点深入展开讲解。

1. 确定哈希桶数组索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):

方法一:
static final int hash(Object key) { //jdk1.8 & jdk1.7int h;// h = key.hashCode() 为第一步 取hashCode值// h ^ (h >>> 16) 为第二步 高位参与运算return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) { //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的return h & (length-1); //第三步 取模运算
}

这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

下面举例说明下,n为table的长度。

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

2. 分析HashMap的put方法

HashMap的put方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;

②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;

③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;

④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;

⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;

⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

3. 扩容机制

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。

我们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大。

 1 void resize(int newCapacity) { //传入新的容量2 Entry[] oldTable = table; //引用扩容前的Entry数组3 int oldCapacity = oldTable.length; 4 if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了5 threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了6 return;7 }8 9 Entry[] newTable = new Entry[newCapacity]; //初始化一个新的Entry数组
10 transfer(newTable); //!!将数据转移到新的Entry数组里
11 table = newTable; //HashMap的table属性引用新的Entry数组
12 threshold = (int)(newCapacity * loadFactor);//修改阈值
13 }

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

 1 void transfer(Entry[] newTable) {2 Entry[] src = table; //src引用了旧的Entry数组3 int newCapacity = newTable.length;4 for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组5 Entrye = src[j]; //取得旧Entry数组的每个元素6 if (e != null) {7 src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)8 do {9 Entrynext = e.next; 10 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置 11 e.next = newTable[i]; //标记[1] 12 newTable[i] = e; //将元素放在数组上 13 e = next; //访问下一个Entry链上的元素 14 } while (e != null); 15 } 16 } 17 } ,v>,v>

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。

线程安全性

在多线程使用场景中,应该尽量避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。

那么为什么说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能造成死循环。代码例子如下(便于理解,仍然使用JDK1.7的环境):

public class HashMapInfiniteLoop { private static HashMapmap = new HashMap(2,0.75f); public static void main(String[] args) { map.put(5, "C"); new Thread("Thread1") { public void run() { map.put(7, "B"); System.out.println(map); }; }.start(); new Thread("Thread2") { public void run() { map.put(3, "A); System.out.println(map); }; }.start(); } } ,string>,string>

其中,map初始化为一个长度为2的数组,loadFactor=0.75,threshold=2*0.75=1,也就是说当put第二个key的时候,map就需要进行resize。

通过设置断点让线程1和线程2同时debug到transfer方法(3.3小节代码块)的首行。注意此时两个线程已经成功添加数据。放开thread1的断点至transfer方法的“Entry next = e.next;” 这一行;然后放开线程2的的断点,让线程2进行resize。结果如下图。

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

注意,Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。

线程一被调度回来执行,先是执行 newTalbe[i] = e, 然后是e = next,导致了e指向了key(7),而下一次循环的next = e.next导致了next指向了key(3)。

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

e.next = newTable[i] 导致 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

于是,当我们用线程一调用map.get(11)时,悲剧就出现了——Infinite Loop。

JDK1.8与JDK1.7的性能对比

HashMap中,如果key经过hash算法得出的数组索引位置全部不相同,即Hash算法非常好,那样的话,getKey方法的时间复杂度就是O(1),如果Hash算法技术的结果碰撞非常多,假如Hash算极其差,所有的Hash算法结果得出的索引位置一样,那样所有的键值对都集中到一个桶中,或者在一个链表中,或者在一个红黑树中,时间复杂度分别为O(n)和O(lgn)。 鉴于JDK1.8做了多方面的优化,总体性能优于JDK1.7,下面我们从两个方面用例子证明这一点。

Hash较均匀的情况

为了便于测试,我们先写一个类Key,如下:

class Key implements Comparable{private final int value;Key(int value) {this.value = value;}@Overridepublic int compareTo(Key o) {return Integer.compare(this.value, o.value);}@Overridepublic boolean equals(Object o) {if (this == o) return true;if (o == null || getClass() != o.getClass())return false;Key key = (Key) o;return value == key.value;}@Overridepublic int hashCode() {return value;}
}

这个类复写了equals方法,并且提供了相当好的hashCode函数,任何一个值的hashCode都不会相同,因为直接使用value当做hashcode。为了避免频繁的GC,我将不变的Key实例缓存了起来,而不是一遍一遍的创建它们。代码如下:

public class Keys {public static final int MAX_KEY = 10_000_000;private static final Key[] KEYS_CACHE = new Key[MAX_KEY];static {for (int i = 0; i < MAX_KEY; ++i) {KEYS_CACHE[i] = new Key(i);}}public static Key of(int value) {return KEYS_CACHE[value];}
}

现在开始我们的试验,测试需要做的仅仅是,创建不同size的HashMap(1、10、100、……10000000),屏蔽了扩容的情况,代码如下:

 static void test(int mapSize) {HashMapmap = new HashMap(mapSize); for (int i = 0; i < mapSize; ++i) { map.put(Keys.of(i), i); } long beginTime = System.nanoTime(); //获取纳秒 for (int i = 0; i < mapSize; i++) { map.get(Keys.of(i)); } long endTime = System.nanoTime(); System.out.println(endTime - beginTime); } public static void main(String[] args) { for(int i=10;i<= 1000 0000;i*= 10){ test(i); } } ,integer>,>

在测试中会查找不同的值,然后度量花费的时间,为了计算getKey的平均时间,我们遍历所有的get方法,计算总的时间,除以key的数量,计算一个平均值,主要用来比较,绝对值可能会受很多环境因素的影响。结果如下:

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

通过观测测试结果可知,JDK1.8的性能要高于JDK1.7 15%以上,在某些size的区域上,甚至高于100%。由于Hash算法较均匀,JDK1.8引入的红黑树效果不明显,下面我们看看Hash不均匀的的情况。

Hash极不均匀的情况

假设我们又一个非常差的Key,它们所有的实例都返回相同的hashCode值。这是使用HashMap最坏的情况。代码修改如下:

class Key implements Comparable{//...@Overridepublic int hashCode() {return 1;}
}

仍然执行main方法,得出的结果如下表所示:

阿里P8架构师谈:深入探讨HashMap的底层结构、原理、扩容机制

从表中结果中可知,随着size的变大,JDK1.7的花费时间是增长的趋势,而JDK1.8是明显的降低趋势,并且呈现对数增长稳定当一个链表太长的时候,HashMap会动态的将它替换成一个红黑树,这话的话会将时间复杂度从O(n)降为O(logn)。hash算法均匀和不均匀所花费的时间明显也不相同,这两种情况的相对比较,可以说明一个好的hash算法的重要性。

小结

(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。

(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。

(4) JDK1.8引入红黑树大程度优化了HashMap的性能。

(5) HashMap的性能提升仅仅是JDK1.8的冰山一角。


money.jpg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480753.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入解析GBDT二分类算法(附代码实现)

目录&#xff1a; GBDT分类算法简介 GBDT二分类算法 2.1 逻辑回归的对数损失函数 2.2 GBDT二分类原理 GBDT二分类算法实例 手撕GBDT二分类算法 4.1 用Python3实现GBDT二分类算法 4.2 用sklearn实现GBDT二分类算法 GBDT分类任务常见的损失函数 总结 Reference 本文的主要…

论文浅尝 | 动态词嵌入

Citation: Bamler R, Mandt S. Dynamic word embeddings.InInternational Conference on Machine Learning 2017 Jul 17 (pp. 380-389).URL&#xff1a;http://proceedings.mlr.press/v70/bamler17a/bamler17a.pdf动机语言随着时间在不断演化&#xff0c;词语的意思也由于文化的…

滴滴 KDD 2018 论文详解:基于强化学习技术的智能派单模型

国际数据挖掘领域的顶级会议 KDD 2018 在伦敦举行&#xff0c;今年 KDD 吸引了全球范围内共 1480 篇论文投递&#xff0c;共收录 293 篇&#xff0c;录取率不足 20%。其中滴滴共有四篇论文入选 KDD 2018&#xff0c;涵盖 ETA 预测 (预估到达时间) 、智能派单、大规模车流管理等…

Keyword-BERT——问答系统中语义匹配的杀手锏

引子 问&答 是人和人之间非常重要的沟通方式&#xff0c;其关键在于&#xff1a;我们要理解对方的问题&#xff0c;并给出他想要的答案。设想这样一个场景&#xff0c;当你的女朋友or老婆大人在七夕前一晚&#xff0c;含情脉脉地跟你说 亲爱的&#xff0c;七夕快到了&…

阿里P8架构师谈:Docker简介、组成架构、使用步骤、以及生态产品

Docker简介 Docker是DotCloud开源的、可以将任何应用包装在Linux container中运行的工具。 Docker基于Go语言开发&#xff0c;代码托管在Github上&#xff0c;目前超过10000次commit。 基于Docker的沙箱环境可以实现轻型隔离&#xff0c;多个容器间不会相互影响&#xff1b;D…

研讨会 | 知识图谱前沿技术课程暨学术研讨会(武汉大学站)

知识图谱作为大数据时代重要的知识表示方式之一&#xff0c;已经成为人工智能领域的一个重要支撑。4月28日&#xff0c;“武汉大学信息集成与应用实验室”与“复旦大学知识工场实验室”联合举办“知识图谱前沿技术课程暨学术研讨会”&#xff0c;将结合知识图谱学界研究与业界应…

LayerNorm是Transformer的最优解吗?

本文转载自公众号“夕小瑶的卖萌屋”&#xff0c;专业带逛互联网算法圈的神操作 -----》我是传送门 关注后&#xff0c;回复以下口令&#xff1a; 回复【789】 &#xff1a;领取深度学习全栈手册&#xff08;含NLP、CV海量综述、必刷论文解读&#xff09; 回复【入群】&#xf…

观点 | 滴滴 AI Labs 负责人叶杰平教授:深度强化学习在滴滴的探索与实践+关于滴滴智能调度的分析和思考+滴滴派单和Uber派单对比

AI 科技评论按&#xff1a;7 月 29 日&#xff0c;YOCSEF TDS《深度强化学习的理论、算法与应用》专题探索报告会于中科院自动化所成功举办&#xff0c;本文为报告会第一场演讲&#xff0c;讲者为滴滴副总裁、AI Labs 负责人叶杰平教授&#xff0c;演讲题为「深度强化学习在滴滴…

消息中间件系列(二):Kafka的原理、基础架构、以及使用场景

一&#xff1a;Kafka简介 Apache Kafka是分布式发布-订阅消息系统&#xff0c;在 kafka官网上对 kafka 的定义&#xff1a;一个分布式发布-订阅消息传递系统。 它最初由LinkedIn公司开发&#xff0c;Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。Kafka是一种快速、…

丁力 | cnSchema:中⽂知识图谱的普通话

本文转载自公众号&#xff1a;大数据创新学习中心。3月10日下午&#xff0c;复旦大学知识工场联手北京理工大学大数据创新学习中心举办的“知识图谱前沿技术课程暨学术研讨会”上&#xff0c;OpenKG联合发起⼈、海知智能CTO丁力博士分享了以“cnSchema&#xff1a;中⽂知识图谱…

详解ERNIE-Baidu进化史及应用场景

一只小狐狸带你解锁 炼丹术&NLP 秘籍Ernie 1.0ERNIE: Enhanced Representation through Knowledge Integration 是百度在2019年4月的时候&#xff0c;基于BERT模型&#xff0c;做的进一步的优化&#xff0c;在中文的NLP任务上得到了state-of-the-art的结果。它主要的改进是…

解读 | 滴滴主题研究计划:机器学习专题+

解读 | 滴滴主题研究计划&#xff1a;机器学习专题&#xff08;上篇&#xff09; 解读 | 滴滴主题研究计划&#xff1a;机器学习专题&#xff08;上篇&#xff09; 2018年7月31日 管理员 微信分享 复制页面地址复制成功滴滴主题研究计划 滴滴希望通过开放业务场景&#xff0c;与…

笔记:seafile 7.x 安装和部署摘要

文章目录1. 安装1.1. 注意事项1.2. 企业微信集成并支持自建第三方应用配置1.3. 内置 Office 文件预览配置1.3.1. 安装 Libreoffice 和 UNO 库2. 主要功能2.1. 服务器个性化配置2.2. 管理员面板2.3. seafile 命令行使用教程2.3.1. ubuntu安装2.3.2. init 初始化seafile配置文件夹…

文章合集

Hi 大家好&#xff0c;我是陈睿|mikechen,这是优知学院的所有文章集合&#xff0c;专门整理这个页面&#xff0c;希望会对大家在浏览感兴趣文章的时候&#xff0c;能有更好的帮助&#xff01; 这些文章的呈现&#xff0c;并不是按照时间轴来排序&#xff0c;无论是新旧文章&…

领域应用 | 阿里发布藏经阁计划,打造 AI 落地最强知识引擎

如果没有知识引擎&#xff0c;人工智能将会怎样&#xff1f;知识引擎可以把数据加工成信息&#xff0c;信息和现有的知识通过推理能够获得新的知识&#xff0c;从而形成庞大的知识网络&#xff0c;像大脑一样支持各种决策。你与智能音箱进行对话&#xff0c;背后就是基于知识引…

ACL2020 | FastBERT:放飞BERT的推理速度

FastBERT 自从BERT问世以来&#xff0c;大多数NLP任务的效果都有了一次质的飞跃。BERT Large在GLUE test上甚至提升了7个点之多。但BERT同时也开启了模型的“做大做深”之路&#xff0c;普通玩家根本训不起&#xff0c;高端玩家虽然训得起但也不一定用得起。 所以BERT之后的发展…

2017年双十一最全面的大数据分析报告在此!+2018年双十一已经开始,厚昌竞价托管教你如何应对流量流失?+2019年双十一大战一触即发:阿里、京东都有哪些套路和玩法

首先说一个众所周知的数据&#xff1a;2017年双十一天猫成交额1682亿。 所以今天&#xff0c;从三个角度带你一起去探索1682亿背后的秘密&#xff1a; 1、全网热度分析&#xff1a;双十一活动在全网的热度变化趋势、关注来源、媒体来源以及关联词分析。 2、各平台对比分析&…

阿里P8架构师谈:大数据架构设计(文章合集)

架构师进阶有一块很重要的内容&#xff0c;就是需要掌握大数据的架构设计&#xff0c;主要涵括&#xff1a; MySQL等关系式数据库&#xff0c;需要掌握数据库的索引、慢SQL、以及长事务的优化等。 需要掌握非关系式数据库&#xff08;NoSQL&#xff09;的选型&#xff0c;以及…

论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统

Qu Y,Liu J, Kang L, et al. Question Answering over Freebase via Attentive RNN withSimilarity Matrix based CNN[J]. arXiv preprint arXiv:1804.03317, 2018.概述随着近年来知识库的快速发展&#xff0c;基于知识库的问答系统&#xff08;KBQA &#xff09;吸引了业界的广…

positional encoding位置编码详解:绝对位置与相对位置编码对比

本文转载自公众号“夕小瑶的卖萌屋”&#xff0c;专业带逛互联网算法圈的神操作 -----》我是传送门 关注后&#xff0c;回复以下口令&#xff1a; 回复【789】 &#xff1a;领取深度学习全栈手册&#xff08;含NLP、CV海量综述、必刷论文解读&#xff09; 回复【入群】&#xf…