数据结构之平衡树:2-3查找树的介绍——16

平衡树(AVL tree)

引入

  • 之前学习的树,都不是平衡的,查找时需要一个一个往内比较,一个结点只储存一个值,数据量存储较大,树的深度会非常的深,导致数据查询时效率会十分的低,本次学习的平衡树就能解决这个问题

定义

  • 平衡树,即AVL tree,命名来源于第一种该类型树的两个发明者Adelson-Velsky 和 Landis,有时也叫Balanced tree,平衡树是一种能自我保持“平衡”的二叉搜索树,在一颗平衡树中,两颗子树之间的高度差最多不超过1,当他们之间的高度差超过1时,它就会自动重新平衡树的高度以恢复这种性质

平衡树的一些特性

  • 查询、插入和删除在最坏情况和平均情况下都是花费O(log n)的时间,相对于一般的二叉树,降低了树的高度,提高了查询、插入、删除等效率
  • 插入和删除可能需要对应部分的子树做一次或多次的旋转动作(后续红黑树中将会介绍到旋转的定义)

下面介绍和实现一种平衡查找树2-3查找树

2-3查找树

2-3查找树介绍

  • 定义:2-3查找树是一种结点能储存最多两个元素最少一个元素的平衡树,储存1个元素的结点拥有2条子树边,称之为2-结点,储存2个元素的结点拥有三条子树边,称之为3-结点
  • 2-结点:含有一个键(及其对应的值)和两条链,左链接指向2-3树中的键都小于该结点,右链接指向的2-3树中的键都大于该结点。
  • 3-结点:含有两个键(及其对应的值)和三条链,左链接指向的2-3树中的键都小于该结点,中链接指向的2 3树中的键都位于该结点的两个键之间,右链接指向的2-3树中的键都大于该结点。
    在这里插入图片描述
    一棵完全平衡的2-3树具有以下性质:
  1. 任意空链接到根结点的路径长度都是相等的。
  2. 4-结点变换为3-结点时,树的高度不会发生变化,只贿当根结点是临时的4-结点,分解根结点时,树高+1。
  3. 2-3树与普通二叉查找树最大的区别在于,普通的二叉查找树是自顶向下生长,而2-3树是自底向上生长。

2-3查找树的查找过程介绍

实现2-3查找树的查找过程跟二叉树的查找过程几乎是一样的:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2-3查找树的不同情况下的插入过程:

  1. 向2-结点插入新键:
    在这里插入图片描述
  2. 向一颗只含3-结点的查找树插入新键
    在这里插入图片描述
  3. 向一颗父结点为2-结点的3-结点插入新键
    在这里插入图片描述
  4. 向一个父结点为3-结点的3-结点中插入新键
    在这里插入图片描述
  5. 分解根结点
    在这里插入图片描述
    在插入过程中,只要遇到含有四个子结点连接边的结点,就要对其进行平衡操作,以使其保持2-3的平衡定义

直接实现2-3树比较复杂,因为:

  • 需要处理不同的结点类型,非常繁琐;
  • 要多次比较操作来将结点下移;
  • 需要_上移来拆分4结点;
  • 拆分4结点的情况有很多种;

这里暂时不进行实现,但是需要对2-3树的思想着重进行理解,2-3查找树实现起来比较复杂,在某些情况插入后的平衡操作可能会使得效率降低。但是2-3查找树作为一种比较重要的概念和思路对于我们后面即将要讲到的红黑树、B-树和B+树非常重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV_12 图像分割:全阈值分割+自适应阈值分割+Otsu 阈值(大津法)+分水岭算法+GraphCut+GrabCut

1 图像分割 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详…

Android中的IPC机制

Android IPC简介 IPC是Inter-Process Communication的缩写,含义就是进程间通信或者跨进程通信,是指两个进程之间进行数据交换的过程。那么什么是进程,什么是线程,进程和线程是两个截然不同的概念。在操作系统中,线程是…

数据结构之平衡树:红黑树的介绍与Python代码实现——17

红黑树的介绍与Python代码实现 红黑树的介绍 红黑树(Red-Black Tree)是一种平衡二叉查找树,它是一种以比较简单的方式实现的2-3查找树 红黑树基于2-3查找树的表现 红链接:将两个2-结点连接起来构成一个3-结点 ;黑链接:则是2-3树中的普通链接。 红黑树的定义&a…

数据结构之并查集:并查集的介绍与Python代码实现——18

并查集的介绍 并查集(Union-find)数据结构也称作合并查找集(Merge-find set)或者不相交集数据结构(disjoint-set data structure),它是一种记录了由一个或多个元素组成的不连续的分组的集合。并…

图像特征提取与描述_角点特征01:Harris算法+Shi-Tomas算法

1 Harris角点检测 1.1 原理 Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化,如下图所示: 将上述思想转换为数学形式,即将局部窗口向各个方向移动(u,v)并计算…

canvas小程序-快跑程序员

canvas不用说html5带来的好东西,游戏什么的,么么哒 记得有一天玩手机游戏,就是一个跳跃过柱子那种,其实元素很简单啊,app能开发,借助html5 canvas也可以啊,于是就开始了。 --------------------…

数据结构之并查集:UF-Tree优化并查集——19

并查集的优化 在上一节了解到并查集的快速查询,合并,判断归属组等操作,虽然这些操作都非常方便,但是在数据量较大的情况下,并查集的效率并不算高: 上一节中实现代码中使用的合并方法(merge,AP…

图像特征提取与描述_角点特征02:SIFT算法+SURF算法

SIFT/SURF算法 1.1 SIFT原理 前面两节我们介绍了Harris和Shi-Tomasi角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗…

图像特征提取与描述_角点特征03:Fast算法+ORB算法

1 Fast算法 1.1 原理 我们前面已经介绍过几个特征检测器,它们的效果都很好,特别是SIFT和SURF算法,但是从实时处理的角度来看,效率还是太低了。为了解决这个问题,Edward Rosten和Tom Drummond在2006年提出了FAST算法&…

数据结构之并查集:路径压缩继续优化并查集——20

路径压缩继续优化并查集 在实现的并查集中,在合并操作merge(item1, item2)时,会不管两个元素所在的分组大小,总是将item 1的分组合并到item2的分组,这样可能会导致树的深度无必要地增加: 如果是大树合并到小树上&…

数据结构之并查集:并查集解决案例, Python——21

并查集解决案例畅通工程 案例问题介绍: 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府"畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还…

图像特征提取与描述_角点特征04:LBP算法+HOG特征算子

1.LBP算法 LBP(Local Binary Pattern)指局部二值模式,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。它是由T. Ojala, M.Pietikinen, 和 D. Harwood在1994年提出,由于LBP特征计算简单、效果较好&#xff…

视频操作_01视频读写:视频读写+读取视频+保存视频

1 从文件中读取视频并播放 在OpenCV中我们要获取一个视频,需要创建一个VideoCapture对象,指定你要读取的视频文件: 1.创建读取视频的对象 cap cv.VideoCapture(filepath) 参数: filepath: 视频文件路径 2.视频的属性信息 2.1…

数据结构之图:无向图的介绍与功能实现,Python——22

无向图(Undigraph)的介绍 引入 生活中的图,有地图,集成电路板的图,可以看类似的看做是数据结构中的图数据有"一对一",“一对多”和“多对多”的关系,前两种分别表示线性表和树的存储…

视频操作_02视频追踪:meanshift算法+Camshift算法

1.meanshift 1.1原理 meanshift算法的原理很简单。假设你有一堆点集,还有一个小的窗口,这个窗口可能是圆形的,现在你可能要移动这个窗口到点集密度最大的区域当中。 如下图: 最开始的窗口是蓝色圆环的区域,命名为C1…

数据结构之图:图的搜索,Python代码实现——23

图的搜索 深度优先搜索(Depth First Search) 定义 从例子出发理解 DFS是一种用于遍历或搜寻树类或图类数据结构的算法,这种算法从根结点出发(如果是图,则任意选择一个顶点作为根结点),在回溯之前会尽可能地遍历每一…

人脸识别案例:【实战】opencv人脸检测+Haar特征分类器

1 基础 我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核&…

数据结构之图:用图解决案例,Python代码实现——24

用图解决畅通工程案例与途径查找 代码中需要引入的类方法代码链接: 无向图Undigraph深度优先搜索DFS与广度优先搜索BFS 畅通工程-续 介绍 案例和之前并查集中实现的一样,但问题略有改动,需要判断9-10城市是否相通,9-8城市是否…

【在虚拟环境下完美解决】1698: error: (-215:Assertion failed) empty() in function cv::CascadeClassifier

问题描述 官方文档做的Demo发现遇到了错误提示如下: error: (-215:Assertion failed) !empty() in function ‘cv::CascadeClassifier::detectMultiScale’ 错误的原因: 出现 error: (-215:Assertion failed) !empty() in function ‘cv::CascadeClassif…

计算机视觉概述:视觉任务+场景领域+发展历程+典型任务

一、什么是计算机视觉 定义:计算机视觉(Computer vision)是⼀⻔研究如何使机器“看”的科学,更 进⼀步的说,就是指⽤摄影机和计算机代替⼈眼对⽬标进⾏识别、跟踪和测量 等,⽤计算机处理成为更适合⼈眼观察…