sklearn官网-多分类问题

sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

 

1.12.6. Multioutput classification

Multioutput classification support can be added to any classifier with MultiOutputClassifier. This strategy consists of fitting one classifier per target. This allows multiple target variable classifications. The purpose of this class is to extend estimators to be able to estimate a series of target functions (f1,f2,f3…,fn) that are trained on a single X predictor matrix to predict a series of responses (y1,y2,y3…,yn).

Below is an example of multioutput classification:

>>>
from sklearn.datasets import make_classification
from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.utils import shuffle import numpy as np X, y1 = make_classification(n_samples=10, n_features=100, n_informative=30, n_classes=3, random_state=1) y2 = shuffle(y1, random_state=1) y3 = shuffle(y1, random_state=2) Y = np.vstack((y1, y2, y3)).T n_samples, n_features = X.shape # 10,100 n_outputs = Y.shape[1] # 3 n_classes = 3 forest = RandomForestClassifier(n_estimators=100, random_state=1) multi_target_forest = MultiOutputClassifier(forest, n_jobs=-1) multi_target_forest.fit(X, Y).predict(X)

 

1.12. Multiclass and multilabel algorithms

Warning

 

All classifiers in scikit-learn do multiclass classification out-of-the-box. You don’t need to use thesklearn.multiclass module unless you want to experiment with different multiclass strategies.

The sklearn.multiclass module implements meta-estimators to solve multiclass and multilabel classification problems by decomposing such problems into binary classification problems. Multitarget regression is also supported.

  • Multiclass classification means a classification task with more than two classes; e.g., classify a set of images of fruits which may be oranges, apples, or pears. Multiclass classification makes the assumption that each sample is assigned to one and only one label: a fruit can be either an apple or a pear but not both at the same time.

  • Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting properties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A text might be about any of religion, politics, finance or education at the same time or none of these.

  • Multioutput regression assigns each sample a set of target values. This can be thought of as predicting several properties for each data-point, such as wind direction and magnitude at a certain location.

  • Multioutput-multiclass classification and multi-task classification means that a single estimator has to handle several joint classification tasks. This is both a generalization of the multi-label classification task, which only considers binary classification, as well as a generalization of the multi-class classification task. The output format is a 2d numpy array or sparse matrix.

    The set of labels can be different for each output variable. For instance, a sample could be assigned “pear” for an output variable that takes possible values in a finite set of species such as “pear”, “apple”; and “blue” or “green” for a second output variable that takes possible values in a finite set of colors such as “green”, “red”, “blue”, “yellow”…

    This means that any classifiers handling multi-output multiclass or multi-task classification tasks, support the multi-label classification task as a special case. Multi-task classification is similar to the multi-output classification task with different model formulations. For more information, see the relevant estimator documentation.

All scikit-learn classifiers are capable of multiclass classification, but the meta-estimators offered by sklearn.multiclasspermit changing the way they handle more than two classes because this may have an effect on classifier performance (either in terms of generalization error or required computational resources).

Below is a summary of the classifiers supported by scikit-learn grouped by strategy; you don’t need the meta-estimators in this class if you’re using one of these, unless you want custom multiclass behavior:

  • Inherently multiclass:
    • sklearn.naive_bayes.BernoulliNB
    • sklearn.tree.DecisionTreeClassifier
    • sklearn.tree.ExtraTreeClassifier
    • sklearn.ensemble.ExtraTreesClassifier
    • sklearn.naive_bayes.GaussianNB
    • sklearn.neighbors.KNeighborsClassifier
    • sklearn.semi_supervised.LabelPropagation
    • sklearn.semi_supervised.LabelSpreading
    • sklearn.discriminant_analysis.LinearDiscriminantAnalysis
    • sklearn.svm.LinearSVC (setting multi_class=”crammer_singer”)
    • sklearn.linear_model.LogisticRegression (setting multi_class=”multinomial”)
    • sklearn.linear_model.LogisticRegressionCV (setting multi_class=”multinomial”)
    • sklearn.neural_network.MLPClassifier
    • sklearn.neighbors.NearestCentroid
    • sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
    • sklearn.neighbors.RadiusNeighborsClassifier
    • sklearn.ensemble.RandomForestClassifier
    • sklearn.linear_model.RidgeClassifier
    • sklearn.linear_model.RidgeClassifierCV
  • Multiclass as One-Vs-One:
    • sklearn.svm.NuSVC
    • sklearn.svm.SVC.
    • sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class = “one_vs_one”)
  • Multiclass as One-Vs-All:
    • sklearn.ensemble.GradientBoostingClassifier
    • sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class = “one_vs_rest”)
    • sklearn.svm.LinearSVC (setting multi_class=”ovr”)
    • sklearn.linear_model.LogisticRegression (setting multi_class=”ovr”)
    • sklearn.linear_model.LogisticRegressionCV (setting multi_class=”ovr”)
    • sklearn.linear_model.SGDClassifier
    • sklearn.linear_model.Perceptron
    • sklearn.linear_model.PassiveAggressiveClassifier
  • Support multilabel:
    • sklearn.tree.DecisionTreeClassifier
    • sklearn.tree.ExtraTreeClassifier
    • sklearn.ensemble.ExtraTreesClassifier
    • sklearn.neighbors.KNeighborsClassifier
    • sklearn.neural_network.MLPClassifier
    • sklearn.neighbors.RadiusNeighborsClassifier
    • sklearn.ensemble.RandomForestClassifier
    • sklearn.linear_model.RidgeClassifierCV
  • Support multiclass-multioutput:
    • sklearn.tree.DecisionTreeClassifier
    • sklearn.tree.ExtraTreeClassifier
    • sklearn.ensemble.ExtraTreesClassifier
    • sklearn.neighbors.KNeighborsClassifier
    • sklearn.neighbors.RadiusNeighborsClassifier
    • sklearn.ensemble.RandomForestClassifier

Warning

 

At present, no metric in sklearn.metrics supports the multioutput-multiclass classification task.

1.12.1. Multilabel classification format

In multilabel learning, the joint set of binary classification tasks is expressed with label binary indicator array: each sample is one row of a 2d array of shape (n_samples, n_classes) with binary values: the one, i.e. the non zero elements, corresponds to the subset of labels. An array such as np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]]) represents label 0 in the first sample, labels 1 and 2 in the second sample, and no labels in the third sample.

Producing multilabel data as a list of sets of labels may be more intuitive. The MultiLabelBinarizer transformer can be used to convert between a collection of collections of labels and the indicator format.

>>>
>>> from sklearn.preprocessing import MultiLabelBinarizer >>> y = [[2, 3, 4], [2], [0, 1, 3], [0, 1, 2, 3, 4], [0, 1, 2]] >>> MultiLabelBinarizer().fit_transform(y) array([[0, 0, 1, 1, 1],  [0, 0, 1, 0, 0],  [1, 1, 0, 1, 0],  [1, 1, 1, 1, 1],  [1, 1, 1, 0, 0]]) 

1.12.2. One-Vs-The-Rest

This strategy, also known as one-vs-all, is implemented in OneVsRestClassifier. The strategy consists in fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability. Since each class is represented by one and only one classifier, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is the most commonly used strategy and is a fair default choice.

1.12.2.1. Multiclass learning

Below is an example of multiclass learning using OvR:

>>>
>>> from sklearn import datasets >>> from sklearn.multiclass import OneVsRestClassifier >>> from sklearn.svm import LinearSVC >>> iris = datasets.load_iris() >>> X, y = iris.data, iris.target >>> OneVsRestClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2,  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) 

1.12.2.2. Multilabel learning

OneVsRestClassifier also supports multilabel classification. To use this feature, feed the classifier an indicator matrix, in which cell [i, j] indicates the presence of label j in sample i.

../_images/sphx_glr_plot_multilabel_0011.png

Examples:

  • Multilabel classification

1.12.3. One-Vs-One

OneVsOneClassifier constructs one classifier per pair of classes. At prediction time, the class which received the most votes is selected. In the event of a tie (among two classes with an equal number of votes), it selects the class with the highest aggregate classification confidence by summing over the pair-wise classification confidence levels computed by the underlying binary classifiers.

Since it requires to fit n_classes (n_classes 1) 2 classifiers, this method is usually slower than one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous for algorithms such as kernel algorithms which don’t scale well with n_samples. This is because each individual learning problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is used n_classes times.

1.12.3.1. Multiclass learning

Below is an example of multiclass learning using OvO:

>>>
>>> from sklearn import datasets >>> from sklearn.multiclass import OneVsOneClassifier >>> from sklearn.svm import LinearSVC >>> iris = datasets.load_iris() >>> X, y = iris.data, iris.target >>> OneVsOneClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) 

References:

  • “Pattern Recognition and Machine Learning. Springer”, Christopher M. Bishop, page 183, (First Edition)

1.12.4. Error-Correcting Output-Codes

Output-code based strategies are fairly different from one-vs-the-rest and one-vs-one. With these strategies, each class is represented in a Euclidean space, where each dimension can only be 0 or 1. Another way to put it is that each class is represented by a binary code (an array of 0 and 1). The matrix which keeps track of the location/code of each class is called the code book. The code size is the dimensionality of the aforementioned space. Intuitively, each class should be represented by a code as unique as possible and a good code book should be designed to optimize classification accuracy. In this implementation, we simply use a randomly-generated code book as advocated in [3] although more elaborate methods may be added in the future.

At fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to project new points in the class space and the class closest to the points is chosen.

In OutputCodeClassifier, the code_size attribute allows the user to control the number of classifiers which will be used. It is a percentage of the total number of classes.

A number between 0 and 1 will require fewer classifiers than one-vs-the-rest. In theory, log2(n_classes) n_classes is sufficient to represent each class unambiguously. However, in practice, it may not lead to good accuracy since log2(n_classes) is much smaller than n_classes.

A number greater than 1 will require more classifiers than one-vs-the-rest. In this case, some classifiers will in theory correct for the mistakes made by other classifiers, hence the name “error-correcting”. In practice, however, this may not happen as classifier mistakes will typically be correlated. The error-correcting output codes have a similar effect to bagging.

1.12.4.1. Multiclass learning

Below is an example of multiclass learning using Output-Codes:

>>>
>>> from sklearn import datasets >>> from sklearn.multiclass import OutputCodeClassifier >>> from sklearn.svm import LinearSVC >>> iris = datasets.load_iris() >>> X, y = iris.data, iris.target >>> clf = OutputCodeClassifier(LinearSVC(random_state=0), ... code_size=2, random_state=0) >>> clf.fit(X, y).predict(X) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,  1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2,  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) 

References:

  • “Solving multiclass learning problems via error-correcting output codes”, Dietterich T., Bakiri G., Journal of Artificial Intelligence Research 2, 1995.
[3]“The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics 7, 1998.
  • “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., page 606 (second-edition) 2008.

1.12.5. Multioutput regression

Multioutput regression support can be added to any regressor with MultiOutputRegressor. This strategy consists of fitting one regressor per target. Since each target is represented by exactly one regressor it is possible to gain knowledge about the target by inspecting its corresponding regressor. As MultiOutputRegressor fits one regressor per target it can not take advantage of correlations between targets.

Below is an example of multioutput regression:

>>>
>>> from sklearn.datasets import make_regression >>> from sklearn.multioutput import MultiOutputRegressor >>> from sklearn.ensemble import GradientBoostingRegressor >>> X, y = make_regression(n_samples=10, n_targets=3, random_state=1) >>> MultiOutputRegressor(GradientBoostingRegressor(random_state=0)).fit(X, y).predict(X) array([[-154.75474165, -147.03498585, -50.03812219],  [ 7.12165031, 5.12914884, -81.46081961],  [-187.8948621 , -100.44373091, 13.88978285],  [-141.62745778, 95.02891072, -191.48204257],  [ 97.03260883, 165.34867495, 139.52003279],  [ 123.92529176, 21.25719016, -7.84253 ],  [-122.25193977, -85.16443186, -107.12274212],  [ -30.170388 , -94.80956739, 12.16979946],  [ 140.72667194, 176.50941682, -17.50447799],  [ 149.37967282, -81.15699552, -5.72850319]]) 

1.12.6. Multioutput classification

Multioutput classification support can be added to any classifier with MultiOutputClassifier. This strategy consists of fitting one classifier per target. This allows multiple target variable classifications. The purpose of this class is to extend estimators to be able to estimate a series of target functions (f1,f2,f3…,fn) that are trained on a single X predictor matrix to predict a series of responses (y1,y2,y3…,yn).

Below is an example of multioutput classification:

>>>
>>> from sklearn.datasets import make_classification >>> from sklearn.multioutput import MultiOutputClassifier >>> from sklearn.ensemble import RandomForestClassifier >>> from sklearn.utils import shuffle >>> import numpy as np >>> X, y1 = make_classification(n_samples=10, n_features=100, n_informative=30, n_classes=3, random_state=1) >>> y2 = shuffle(y1, random_state=1) >>> y3 = shuffle(y1, random_state=2) >>> Y = np.vstack((y1, y2, y3)).T >>> n_samples, n_features = X.shape # 10,100 >>> n_outputs = Y.shape[1] # 3 >>> n_classes = 3 >>> forest = RandomForestClassifier(n_estimators=100, random_state=1) >>> multi_target_forest = MultiOutputClassifier(forest, n_jobs=-1) >>> multi_target_forest.fit(X, Y).predict(X) array([[2, 2, 0],  [1, 2, 1],  [2, 1, 0],  [0, 0, 2],  [0, 2, 1],  [0, 0, 2],  [1, 1, 0],  [1, 1, 1],  [0, 0, 2],  [2, 0, 0]]) 

1.12.7. Classifier Chain

Classifier chains (see ClassifierChain) are a way of combining a number of binary classifiers into a single multi-label model that is capable of exploiting correlations among targets.

For a multi-label classification problem with N classes, N binary classifiers are assigned an integer between 0 and N-1. These integers define the order of models in the chain. Each classifier is then fit on the available training data plus the true labels of the classes whose models were assigned a lower number.

When predicting, the true labels will not be available. Instead the predictions of each model are passed on to the subsequent models in the chain to be used as features.

Clearly the order of the chain is important. The first model in the chain has no information about the other labels while the last model in the chain has features indicating the presence of all of the other labels. In general one does not know the optimal ordering of the models in the chain so typically many randomly ordered chains are fit and their predictions are averaged together.

References:

Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank,
“Classifier Chains for Multi-label Classification”, 2009.

1.12.8. Regressor Chain

Regressor chains (see RegressorChain) is analogous to ClassifierChain as a way of combining a number of regressions into a single multi-target model that is capable of exploiting correlations among targets.

python风控评分卡建模和风控常识

https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

转载于:https://www.cnblogs.com/webRobot/p/8417587.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/466738.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

剖析C语言是如何画出这样的三角形的

哈哈,就是喜欢这些有意思的C语言上篇文章是这样写的c语言画谢宾斯基三角形那篇文章写的有点不直接,然后再查了下资料,看到了下面这些,我觉得解释更加好,这里主要是运用了光栅法,至于光栅法,可以…

NILMTK在Windows下的安装教程

近期,要进行负荷辨识,找到NILMTK安装包,特意将过程记录下来。 (1)Windows安装 本机已安装了Anaconda,环境是Python3,NILMTK包的项目地址为:https://github.com/nilmtk/nilm_metada…

修改cmdline 把内存改成512MB

#添加cmdline的方式— — 在BoardConfig.mk中修改device/mediateksample/aiv8167sm3_bsp/BoardConfig.mk BOARD_KERNEL_CMDLINE bootopt64S3,32N2,32N2 mem512MB— — 在dts 里面修改kernel-4.4\arch\arm\boot\dts\*.dts / {model "Atmel AT91SAM9M10G45-EK";compa…

NILMTK——经典数据集REDD介绍和使用

配置了NILMTK包的环境之后,想找数据测试一下,在NILMTK官网的API Docs里边发现dataset_converters模块中有内置的数据集处理函数,如图: 将数据转换成HDF文件,这些数据都是比较优秀的,其中,常用的…

上拉电阻的作用

1、介绍使用微控制器(MCUs) 或任何数字逻辑设备时,上拉电阻器非常常见。本教程将解释何时何地使用上拉电阻器,然后我们将做一个简单的计算,以显示为什么上拉很重要。2、上拉电阻是什么?假设您有一个将一个引…

NILMTK——深扒组合优化(CO)和FHMM细节

前面的博客讲了具体实现,现在深究算法代码实现细节!!! 1.CO (1)关于train 从以下代码可知,CO首先是对各个电器的功率数据做了train,为了了解其原生实现对代码进行了深究: classifiers {CO:…

深圳工资指导价出炉!最高月薪6万!你拖同行后腿了吗?

2020 年只剩下不到一个月了,年初立的 flag 有没有实现呢?我想多数人面临的尴尬是升职、加薪、赢取白富美、走上人生巅峰可能一步都没实现~对比周围混得风生水起的小伙伴感觉自己也不差啥啊,怎么就莫名其妙被甩了八条街?想一探究竟…

NILMTK——因子隐马尔可夫之隐马尔可夫

因子隐马尔可夫(FHMM)由Ghahramani在1997年提出,是一种多链隐马尔可夫模型,适合动态过程时间序列的建模,并具有强大的时序模型的分类能力,特别适合非平稳、再现性差的序列的分析。 1. 马尔可夫链 随机过程的研究对象是随时间演变…

CodeForces 903D Almost Difference

题目描述 Lets denote a function You are given an array aa consisting of nn integers. You have to calculate the sum of d(a_{i},a_{j})d(ai​,aj​) over all pairs (i,j)(i,j) such that 1<i<j<n1<i<j<n . 输入输出格式 输入格式&#xff1a; The fi…

据悉,深圳某工程师沦为C语言笔试枪手

事情是这样的&#xff0c;昨晚晚上&#xff0c;有个网友发消息给我&#xff0c;说他有几道C语言笔试题不会写&#xff0c;所以&#xff0c;就出现了解题的这一幕。文章中&#xff0c;我只讲解了一部分&#xff0c;有一些题目觉得没必要讲&#xff0c;然后我在pdf上做了注释&…

大数据工具使用——安装Hadoop(多台服务器)和Hive、Hbase

1.配置环境版本 资料上传百度云&#xff0c;自取&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1evVp5Zk0_X7VdjKlHGkYCw 提取码&#xff1a;ypti 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 &#xff08;之前安装的是apache版本的Hadoop2.6.4,在启…

[转] 关于 WCF 中数据压缩的几篇文章

原文:http://www.cnblogs.com/jiabao/archive/2007/12/04/982534.html在.net3.0出现以前我们进行分布式开发式有两个选择一个是webservice&#xff0c;另一个是remoting&#xff1b;在早期的项目中&#xff0c;比较喜欢remoting&#xff0c;因为remoting可控性好&#xff0c;也…

聊一聊我自己的从业经历和感悟

嵌入式学习&#xff0c;是一个很枯燥的过程&#xff0c;我记得在学习三极管的时候&#xff0c;我真的对这个东西一点感觉都没有&#xff0c;我知道三极管可以放大&#xff0c;然后电子从一个地方去到了另一个地方&#xff0c;然后就触发了某个开关&#xff0c;就发了大水。然后…

大数据——sqoop操作mysql和hive导出导入数据

1.sqoop安装 &#xff08;1&#xff09;下载CDH版本的sqoop &#xff08;2&#xff09;解压并进行环境配置 环境变量为&#xff1a; export SQOOP_HOME/home/sqoop-1.4.6-cdh5.15.1 export PATH$PATH:$SQOOP_HOME/bin 在sqoop安装目录/conf/下&#xff1a; #新建sqoop-en…

年终了,肿一下

也没有没有跟大家好好唠唠&#xff0c;一年时间过得飞快&#xff0c;我还记得那时候从老家开车来深圳&#xff0c;一路狂奔&#xff0c;在广西入境广东的时候&#xff0c;因为疫情排查&#xff0c;我们在那里堵了3个小时&#xff0c;还因为路途颠簸&#xff0c;车子一起一停&am…

大数据——spark安装部署和python环境配置

需要配置多台服务器&#xff0c;实验环境&#xff1a;master和data两台服务器&#xff0c;已安装好hadoop&#xff0c;可参考前文&#xff01;&#xff01;&#xff01; 1.spark安装 master安装 &#xff08;1&#xff09;下载scala和spark &#xff08;2&#xff09;解压并…

2021年,这是你们收到的第一份礼物

一、 前言大家好&#xff0c;2020年就要过去了&#xff0c;这一年来&#xff0c;感谢大家对公众号的支持&#xff0c;但是感谢不能停留在嘴上&#xff0c;所以&#xff0c;这次邀请了正点原子赞助。一起给大家送点礼品&#xff01;作为一名 电子/嵌入式 人&#xff0c;正点原子…

深入理解Linux内核进程上下文切换

在原作者基础上修改了些文字描述&#xff0c;让文章更加通俗易懂作者简介韩传华&#xff0c;就职于南京大鱼半导体有限公司&#xff0c;主要从事linux相关系统软件开发工作&#xff0c;负责Soc芯片BringUp及系统软件开发&#xff0c;乐于分享喜欢学习&#xff0c;喜欢专研Linux…

Linux C高级编程——网络编程基础(1)

Linux高级编程——BSD socket的网络编程 宗旨&#xff1a;技术的学习是有限的&#xff0c;分享的精神是无限的。 一网络通信基础 TCP/IP协议簇基础&#xff1a;之所以称TCP/IP是一个协议簇&#xff0c;是因为TCP/IP包含TCP 、IP、UDP、ICMP等多种协议。下图是OSI模型与TCP/IP模…

使用SQLDMO中“接口SQLDMO.Namelist 的 QueryInterface 失败”异常的解决方法

SQLDMO&#xff08;SQL Distributed Management Objects&#xff0c;SQL分布式管理对象&#xff09;&#xff0c;它封装 Microsoft SQL Server 数据库中的对象。它允许我们通过COM对象&#xff0c;对SQLServer进行管理。SQLDMO对象来自SQLDMO.dll。因为SQLDMO.dll是一个COM对象…