python的datetime函数_Python连载8-datetime包函数介绍

一、datetime包(上接连载7内容)

1.函数:datetime

(1)用法:输入一个日期,来返回一个datetime类?

(2)格式:datetime.datetime(年,月,日,hour=,minute=,second=)

其中hour,minute,second可选

(3)附加类方法:

today():返回本地当前时间

now():返回本地当前时间

utcnow():返回本地当前时间

fromtimestamp(时间戳):返回时间戳的本地时间

dt = datetime.datetime(2019,6,10)

print(type(dt))

print(dt.today())

print(dt.now())

print(dt.utcnow())

print(dt.fromtimestamp(time.time()))

print(dt)

d4f0627c821433bcb5ee2e8aa74baef3.png

2.函数:timedelta

(1)用法:表示一个时间间隔

(2)格式:datetime.timedelta(days=?,hours=?,minutes=?,seconds=?)

试了一下,month和years并不支持

t1 = datetime.datetime.now()

print(t1.strftime("%Y{a}%m{a}%d{b}%H{c}%M{c}%S".format(a="/",b=" ",c=":")))

t2 =datetime.timedelta(hours=1,days=2,minutes=1,seconds=2)

print((t1+t2).strftime("%Y{a}%m{a}%d{b}%H{c}%M{c}%S".format(a="/",b=" ",c=":")))

c52c603583b29fe81f7b16ce8e56da39.png

二、timeit包

1.函数:timeit

(1)用法:时间测量工具,测量程序运行时间间隔的实验

(2)格式:timeit.timeit(stmt=代码块/函数名,number=执行次数,)

c=‘‘‘

sum= []

for i in range(1000):

sum.append(i)

‘‘‘

#利用timeit调用代码,执行100000次,查看运行时间

t4 = timeit.timeit(stmt = "[i for i in range(1000)]",number=100000)

#测试代码c执行100000次的运行结果

t5 = timeit.timeit(stmt=c,number=100000)

print(t4)

print(t5)

1e17746db683e6045116d153d4a91da2.png

三、源码

d17_5_datetime_package

地址:https://github.com/ruigege66/Python_learning/blob/master/d17_5_datetime_package

2.CSDN:https://blog.csdn.net/weixin_44630050(心悦君兮君不知-睿)

3.简书:https://www.jianshu.com/u/a9169ca4f1c9(心悦君兮君不知dqr)

4.欢迎关注微信公众号:傅里叶变换

1564b799c885ea1fabd5fa00d2eb9307.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/453724.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习之 soft-NMS

论文:《Improving Object DetectionWith One Line of Code》soft-NMS 英文论文链接:https://arxiv.org/pdf/1704.04503.pdfsoft-NMS github 链接:https://github.com/bharatsingh430/soft-nms 绝大部分目标检测方法,最后都要用到…

一维二维_Excel二维数据转一维,2种方法轻松搞定

今天是2020年1月1日,祝各位小伙伴们新年快乐,开心每一天~如下所示,左边是二维交叉数据表,我们希望快速转换成右边的一维数据表如果复制粘贴,效率太低了,今天分享两种方法,实现快速转换1、powerq…

深度学习之 Cascade R-CNN

Zhaowei Cai, Nuno Vasconcelos. 《Cascade R-CNN: Delving into High Quality Object Detection》. CVPR 2018.论文链接:https://arxiv.org/abs/1712.00726代码链接:https://github.com/zhaoweicai/cascade-rcnn 前言 IOU阈值被用来定义正负例&#x…

转换文档参数_明明2秒可以搞定Word、Excel相互转换,你却用了半小时!真亏了...

我们在用office三件套工作的时候,经常都需要对文件的格式进行转换,像是Word文档和Excel表格的转换,很多小伙伴都要花上半个小时甚至以上的时间才能搞定,效率实在不行。别担心,今天小编将分享能快速完成Word、Excel转换…

深度学习之 DCN(Deformable Convolution)-可变形卷积

Paper link: http://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.pdfhttps://arxiv.org/pdf/1703.06211 Code link: https://github.com/msracver/Deformable-ConvNets Abstract 如何有效地对几何图形的变化进行…

软件开发 项目进展 软件架构 指南

软件开发,标准化流水线式开发的实施构想 软件开发,标准化流水线式开发的实施构想 近日看到一篇博文,讨论标准化流水线开发模式的话题,但是这篇博文仅仅提出这个问题,未见回应。 这其实是一个很大的问题,我…

c++ 舞伴配对问题_挑战新物体描述问题,视觉词表解决方案超越人类表现

编者按:最近,研究者们发布了 nocaps 挑战,用以测量在没有对应的训练数据的情况下,模型能否准确描述测试图像中新出现的各种类别的物体。针对挑战中的问题,微软 Azure 认知服务团队和微软研究院的研究员提出了全新解决方…

深度学习之双线性插值(Bilinear interpolation)

1. 什么是插值 Interpolation is a method of constructing new data points within the range of a discrete set of known data points. Image interpolation refers to the“guess”of intensity values at missing locations. 图片放大是图像处理中的一个特别基础的操作。…

深度学习之 OHEM (Online Hard Example Mining)

论文 《Training Region-based Object Detectors with Online Hard Example Mining》链接 https://arxiv.org/pdf/1604.03540.pdf Astract 摘要主要讲了四点: (1) 训练过程需要进行参数的空间搜索(2) 简单样本与难分辨样本之间的类别不平衡是亟需解决的问题(3) 自…

音视频 详解

avi文件格式详解 AVI是音频视频交错(Audio Video Interleaved)的英文缩写,它是Microsoft公司开发的一种符合RIFF文件规范的数字音频与视频文件格式,原先用于Microsoft Video for Windows (简称VFW)环境,现在已被Windows 95/98、OS/2等多数操…

c6011取消对null指针的引用_C++| 函数的指针参数如何传递内存?

函数的参数是一个一级指针,可以传递内存吗?如果函数的参数是一个一级指针,不要指望用该指针去申请动态内存。看下面的实例:#include using namespace std;void GetMemory(char *p, int num){p (char *)malloc(sizeof(char) * num…

深度学习目标检测之 YOLO v2

论文名:《YOLO9000: Better, Faster, Stronger》原文:https://arxiv.org/pdf/1612.08242v1.pdf代码:http://pjreddie.com/darknet/yolo/ YOLO v2 斩获了CVPR 2017 Best Paper Honorable Mention。在这篇文章中,作者首先在YOLOv1的…

深度学习目标检测之 YOLO v3

论文名:《YOLOv3: An Incremental Improvement》论文地址 https://pjreddie.com/media/files/papers/YOLOv3.pdfhttps://arxiv.org/abs/1804.02767v1 论文代码 https://github.com/yjh0410/yolov2-yolov3_PyTorchkeras:https://github.com/qqwweee/keras…

30本pdf完整版的经典Linux学习和开发教程和资料下载 android arm java 资料大全

史上最牛的Linux内核学习方法论 点击下载我的arm_linux移植笔记 点击下载S3C2440完全开发流程 点击下载Linux系统命令及其使用详解完整版 点击下载Linux主要shell命令详解 点击下载深入理解Linux内核(第三版 pdf英文版) 点击下载深入分析Linux内核源代码教程pdf完整版 点击下…

Fedex Ship Manager Software安装

本文出自Simmy的个人blog:西米在线 http://simmyonline.com/archives/552.html 这个软件的安装颇费了我一番周章,特地Log之。下载:http://www.fedex.com/apac_english/fsmsoftware/ 安装完后,接着输入用户信息,然后连…

【转】博客美化(3)为博客添加一个漂亮的分享按钮

阅读目录 1.社会化分享2.选择一个分享按钮3.添加到博客园博客博客园美化相关文章目录:博客园博客美化相关文章目录 在前2篇博客“博客美化(1)基本后台设置与样式设置”与"博客美化(2)自定义博客样式细节"中详细介绍了博客样式设置的相关问题,当…

深度学习目标检测之 YOLO v4

论文原文:https://arxiv.org/abs/2004.10934代码 原版c: https://github.com/AlexeyAB/darknetkeras:https://github.com/Ma-Dan/keras-yolo4pytorch:https://github.com/Tianxiaomo/pytorch-YOLOv4 前言 2020年YOLO系列的作者…

[Android] 年年有鱼手机主题

自制的年年有鱼手机主题,希望大家喜欢!~ 下载地址:https://yunpan.cn/cqauQbiM97idd (提取码:d272) 本文转自haiyang45751CTO博客,原文链接: http://blog.51cto.com/haiyang457/1…

mysql 小数做索引_10 分钟掌握 MySQL 的索引查询优化技巧

本文的内容是总结一些MySQL的常见使用技巧,以供没有DBA的团队参考。如无特殊说明,存储引擎以InnoDB为准。MySQL的特点了解MySQL的特点有助于更好的使用MySQL,MySQL和其它常见数据库最大的不同在于存在存储引擎这个概念,存储引擎负…

模块与包

一 模块介绍 1、什么是模块? #常见的场景:一个模块就是一个包含了一组功能的python文件,比如spam.py,模块名为spam,可以通过import spam使用。#在python中,模块的使用方式都是一样的,但其实细说的话&#x…