LangChain手记 Question Answer 问答系统

整理并翻译自DeepLearning.AI×LangChain的官方课程:Question Answer(源代码可见)

本节介绍使用LangChian构建文档上的问答系统,可以实现给定一个PDF文档,询问关于文档上出现过的某个信息点,LLM可以给出关于该信息点的详情信息。这种使用方式比较灵活,因为并没有使用PDF上的文本对模型进行训练就可以实现文档上的信息点问答。本节介绍的Chain也比较常用,它涉及到了嵌入(embedding)和向量存储(vector store)。

(笔者注:embedding指的是将一个实体映射到高维空间,以高维向量的形式存储,以最大限度地capture其信息,自然语言处理使用embedding方式表示单词,即词向量。自然语言处理语境下,embedding都指的是word embedding词嵌入)

首先是一个简单的例子:
在这里插入图片描述
在这里插入图片描述
下面解释了一下底层原理:

LLM‘s on Documents 文档上的大语言模型

在这里插入图片描述
由于最大token数限制,LLM最多只能一次性处理几千个token。因而如果有一个文档级别的信息(远大于几千token),LLM没办法直接处理,因而引入词嵌入(embedding)和向量存储(vector store)来解决这个问题

在这里插入图片描述

Embedding 词嵌入

  • 嵌入向量捕捉上下文/含义
  • 相似(指语义相似)内容地文本对应相似的向量

如下图:句子1)和2)语义相似,因而它们的表示向量也相似。
在这里插入图片描述
因而我们可以使用表示向量的相似程度来判定两句话的相似程度,在回答文档上的问题时,先找出和提问相似的信息,作为输入喂给LLM,期望LLM能根据相似信息做出解答。

(笔者注:事实上,LLM内部就是将文本转化为词向量(tokenizer)来处理的,直接以向量形式存储节省了文本到向量的转化步骤。)

Vecotor Database 向量数据库

在这里插入图片描述
在这里插入图片描述
当一个查询输入时,先将其向量化,然后跟向量数据库里面的所有项对比,找出最相似的n项。
在这里插入图片描述
查询结果放入输入的上下文中喂给LLM,得到回复。

下面分步解释过程:
在这里插入图片描述
使用CSVLoader对象loader加载一个csv文件,里面存放了户外服装相关信息,打印第一行信息如上图。

因为文本量比较少,不需要分块,因而可以直接创建embedding,查看一个embedding(其实是一组词向量):
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上述过程可以使用RetrievalQA chain轻松实现:
在这里插入图片描述
在这里插入图片描述

Stuff method 原材料方法

在这里插入图片描述
原材料是最简单的方法,只需要将所有的原始数据放到prompt中作为上下文喂给语言模型。
优点:只需调用一次LLM。LLM可以一次性访问所有数据。
缺点:LLM有上下文长度,对于大型文档或者多个文档超过上下文长度时无法生效。

additional methods 额外方法

在这里插入图片描述
Map_reduce:将文档每一个块和提问一起输入一个LLM中,汇总所有LLM结果,再使用一个LLM处理拿到最终答案。
(很有效,可以处理任意数量的文档,还可以并行,但很贵,且独立对待每一个文档,即忽略了文档之间的关联性)

在这里插入图片描述
Refine:从一个块和LLM中得到回复之后,再把结果作为下一轮的输出,不断优化到最后一个块,得到最终结果。
(好处时考虑了文档之间的关联性,和map_reduce代价相同)

在这里插入图片描述
Map_rank:处理所有块,给每一个块和LLM的结果打分,选一个分最高的作为最终结果。
(需要LLM有能力给结果打分,和map_reduce代价相同,也没有考虑文档之间的关联性)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43119.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【vue】项目基础环境搭建、css样式重置与公用

nodejs环境 nodejs是当下前端工程化开发必不可少的环境, 使用 nodejs的 npm功能来管理依赖包 查看node 和 npm的版本 node -v #查看node版本npm -v #查看npm版本 git版本控制 git版本控制工具是目前最为流行的分布式版本管理工具,代码的**提交, 检出, 日志**, 都需要通过git完…

Matplotlib数据可视化(二)

目录 1.rc参数设置 1.1 lines.linestype取值 1.2 lines.marker参数的取值 1.3 绘图中文预设 1.4 示例 1.4.1 示例1 1.4.2 示例2 1.rc参数设置 利用matplotlib绘图时为了让绘制出的图形更加好看,需要对参数进行设置rc参数设置。可以通过以下代码查看matplotli…

[Machine Learning] decision tree 决策树

(为了节约时间,后面关于机器学习和有关内容哦就是用中文进行书写了,如果有需要的话,我在目前手头项目交工以后,用英文重写一遍) (祝,本文同时用于比赛学习笔记和机器学习基础课程&a…

【算法学习】两数之和II - 输入有序数组

题目描述 原题链接 给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < …

Springboot MultipartFile文件上传与下载

yml文件配置是否可以上传及上传附件大小 servlet:multipart:# 允许文件上传enabled: true# 单个文件大小max-file-size: 20MB# 设置总上传的文件大小max-request-size: 50MB /*** param files* param request* Description 上传文件* Throws* Return java.util.List* Date 202…

动手学深度学习—卷积神经网络LeNet(代码详解)

1. LeNet LeNet由两个部分组成&#xff1a; 卷积编码器&#xff1a;由两个卷积层组成&#xff1b;全连接层密集块&#xff1a;由三个全连接层组成。 每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层&#xff1b;每个卷积层使用55卷积核和一个sigmoid激…

LeetCode--HOT100题(35)

目录 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09;题目接口解题思路1代码解题思路2代码 PS: 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09; 给你一个链表数组&#xff0c;每个链表都已经按升序排列。 请你将所有链表合…

UDP 的报文结构以及注意事项

UDP协议 1.UDP协议端格式 1.图中的16位UDP长度,表示整个数据报(UDP首部UDP数据)的最大长度 2.若校验和出错,会直接丢弃 2.UDP的报文结构 UDP报文主体分为两个部分:UDP报头(占8个字节)UDP载荷/UDP数据 1.源端口号 16位,2个字节 2.目的端口号 16位,2个字节 3.包长度 指示了…

sd-webui安装comfyui扩展

文章目录 导读ComfyUI 环境安装1. 安装相关组件2. 启动sd-webui3. 访问sd-webui 错误信息以及解决办法 导读 这篇文章主要给大家介绍如何在sd-webui中来安装ComfyUI插件 ComfyUI ComfyUI是一个基于节点流程式的stable diffusion的绘图工具&#xff0c;它集成了stable diffus…

什么是闭包(closure)?为什么它在JavaScript中很有用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 闭包&#xff08;Closure&#xff09;是什么&#xff1f;⭐ 闭包的用处⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…

windows10 安装WSL2, Ubuntu,docker

AI- 通过docker开发调试部署ChatLLM 阅读时长&#xff1a;10分钟 本文内容&#xff1a; window上安装ubuntu虚拟机&#xff0c;并在虚拟机中安装docker&#xff0c;通过docker部署数字人模型&#xff0c;通过vscode链接到虚拟机进行开发调试.调试完成后&#xff0c;直接部署在云…

变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践

目录导读 变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践1. 什么是变更通知2. 变更通知的场景分析3. 变更通知的技术方案3.1 变更通知的技术实现方案 4. 变更通知的最佳实践总结5. 参考资料 变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践 1. 什么是变更通…

Ubuntu在自己的项目中使用pcl

1、建立一个文件夹&#xff0c;如pcl_demos&#xff0c;里面建立一个.cpp文件和一个cmake文件 2、打开终端并进入该文件夹下&#xff0c;建立一个build文件夹存放编译的结果并进入该文件夹 3、对上一级进行编译 cmake .. 4、生成可执行文件 make 5、运行该可执行文件 6、可视…

微服务中间件-分布式缓存Redis

分布式缓存 a.Redis持久化1) RDB持久化1.a) RDB持久化-原理 2) AOF持久化3) 两者对比 b.Redis主从1) 搭建主从架构2) 数据同步原理&#xff08;全量同步&#xff09;3) 数据同步原理&#xff08;增量同步&#xff09; c.Redis哨兵1) 哨兵的作用2) 搭建Redis哨兵集群3) RedisTem…

金融语言模型:FinGPT

项目简介 FinGPT是一个开源的金融语言模型&#xff08;LLMs&#xff09;&#xff0c;由FinNLP项目提供。这个项目让对金融领域的自然语言处理&#xff08;NLP&#xff09;感兴趣的人们有了一个可以自由尝试的平台&#xff0c;并提供了一个与专有模型相比更容易获取的金融数据。…

VS2015项目中,MFC内存中调用DLL函数(VC6生成的示例DLL)

本例主要讲一下&#xff0c;用VC6如何生成DLL&#xff0c;用工具WinHex取得DLL全部内容&#xff0c;VC2015项目加载内存中的DLL函数&#xff0c;并调用函数的示例。 本例中的示例代码下载&#xff0c;点击可以下载 一、VC6.0生成示例DLL项目 1.新建项目&#xff0c;…

SQL Server Express 自动备份方案

文章目录 SQL Server Express 自动备份方案前言方案原理SQL Server Express 自动备份1.创建存储过程2.设定计划任务3.结果检查sqlcmd 参数说明SQL Server Express 自动备份方案 前言 对于许多小型企业和个人开发者来说,SQL Server Express是一个经济实惠且强大的数据库解决方…

Spring Framework中的Bean生命周期

目录 一.Bean生命周期的简介 1.基本概念 2.Spring生命周期的几大阶段 3.注意点及小结 4.生活案例 5.Spring容器管理JavaBean的初始化过程 二. Bean的单例选择与多例选择 1.单例选择与多例选择的优缺点 1.1单例模式的优点&#xff1a; 1.2单例模式的缺点&#xff1a; 1…

JDK 8 升级 JDK 17 全流程教学指南

JDK 8 升级 JDK 17 首先已有项目升级是会经历一个较长的调试和自测过程来保证允许和兼容没有问题。先说几个重要的点 遇到问题别放弃仔细阅读报错&#xff0c;精确到每个单词每一行&#xff0c;不是自己项目的代码也要点进去看看源码到底是为啥报错明确你项目引入的包&#x…

第三届“赣政杯”网络安全大赛 | 赛宁筑牢安全应急防线

​​为持续强化江西省党政机关网络安全风险防范意识&#xff0c;提高信息化岗位从业人员基础技能&#xff0c;提升应对网络安全风险处置能力。由江西省委网信办、江西省发展改革委主办&#xff0c;江西省大数据中心、国家计算机网络与信息安全管理中心江西分中心承办&#xff0…