[Machine Learning] decision tree 决策树

(为了节约时间,后面关于机器学习和有关内容哦就是用中文进行书写了,如果有需要的话,我在目前手头项目交工以后,用英文重写一遍)

(祝,本文同时用于比赛学习笔记和机器学习基础课程)

俺前两天参加了一个ai类的比赛,其中用到了一种名为baseline的模型来进行一些数据的识别。而这个识别的底层原理就是决策树。正好原本的学习进度刚刚完成这部分,所以集成一个笔记了,本文中所有的截图绝大多数来自吴恩达老师的公开课程,为了方便理解,把相关的图片搬过来了)

决策树是什么

决策树是一种机器学习算法,在一个类似二叉树的结构上实现的分支判断算法。每个节点都视为一个“判断语句”,将一批数据划分成不同的部分。节点上(除了叶子)都要判断“是”/“否”。

 一个具体化以后的模型差不多长这样子:给出一堆宠物的数据,根据不同的特征(耳朵,脸型什么的),我们判断输入案例是狗还是猫猫。

如果还是不好理解,那么想象一下我们平时在写代码时候大量if else嵌套,展开以后也是一模一样的结构。去别在于可能if构成的判断树的后代可能多于决策树,决策树只能是二叉树,输出“是”“不是”这种问题,当面对多个离散的特征值的时候,我们还有别的技术可以使用.

简而言之,决策树是一种区别于神经网络的另一种判断算法,在一些数据的处理上可能比神经网络更快更有效,由于其结构类似二叉树,所以称之为决策树(decision tree).决策树的生成是要根据已经给出的数据案例创建的,数据有多少特征用于区分,就会有多少个节点进行分裂(split).

具体的训练过程和训练中遇到的问题会在下面解释

在训练之前要接触的一些名词

纯净(purity)/杂质(impurity):纯度和不纯是根据某个节点来说的,例如我们输入一堆宠物的数据(包括耳朵形状,毛发长度,脸型这些特征),在判断某个属性的节点上,我们会根据"符合"/"不符合"把已有的数据划分为两拨.比如这样子

 原型的部分中,有四个是猫猫,三个是狗子.对于这个节点来说,我们可以认为这个节点的纯度是(4/7)

同理,另一个节点的纯度视为(1/3)

(纯度是一个相对的概念,如果你判断的是狗子,那么纯度就要变了)

:这个熵不是化学中的概念,而是代表混乱程度,当纯度和为0.5的时候,代表两种东西对半开,也就是最混乱的情况.根据纯度,我们有相关的公式可以计算出纯度对应熵的大小(假设纯度为p)

H(p)=-p\log _{2}(p)-(1-p)\log _{2}(1-p)

整个函数的图像大概就是这样子

信息增益:信息增益也是根据某一个点来说的,这个数值是训练时候的重要依据,信息增益越大,代表整个节点进行的划分越有效,信息增益的计算方式为

Information\: gain=H(0.5)-W_ {left}H(p_{left})-W_ {right}H(p_{right})

0.5对应的熵,减去左侧的熵和右侧的熵的加权平均和即可.比如上面的图,我们可以计算为

H(0.5)-(\frac{7}{10}p_{left}+\frac{3}{10}p_{right})

决策树如何进行训练

决策树底层的训练原理其实很简单,首先我们需要给定一个数据集合,这个数据集合中的每个事物都有一些共同的特征,类似这样,通常我们可以把有效的特征组合起来形成一个表格.

 前面的特征为输入,而cat一列作为输出,决定这个宠物到底是不是猫,由此构成一系列符合监督学习要求的训练数据集合.

然后会从这些信息中,选择分裂时产生更小熵的特征,算法会基于某种标准(例如信息增益、基尼不纯度等)来评估每个可能的划分,并选择最优的划分特征。这些标准用于衡量数据的不纯度和分割后的纯度。这里我们使用上面讲到的信息增益来判断这个划分成都

 由此可见,以耳朵形状作为划分所产生的分裂节点,信息增益更大,纯度也更好.

接下来再根据其他的特征进行划分即可,当遇到以下几种情况的时候,我们可以认为这个节点不用再继续分裂了

  • 树的高度达到某些限制
  • 纯度已经是100%
  • 数据全部低于阈值
  • ........

 两个特殊情况

(1)分裂时候的数据不是二元的离散数值,而是一个连续的情况

这个很简单,设置一个阈值,比如0.5,0,7,....反正到最后还是二元的

(2)分裂的时候,可能数据是多元的离散数值,比如毛发可能是长发,短发,卷发这三种.我们总不能搞出三叉树来,所以这里我们把"是什么"转变为"是不是"的问题.比如这样一个特征,我们可以划分为"是不是长发,是不是短发,是不是卷毛"三个二元的特征

随机森林算法

给定一个数据集合,我们可以计算出一个决策树来进行一些判断,给定一个动物,决策树最红会给出我们这个是不是猫猫的答案.但是这有两个问题,节点不一定是纯净的(虽然大多数情况下,只要不超过我们的限定高度,是可以把一个决策树修炼到高度纯净的),造成判断结果不一定准确.

另一个问题就是,一些数据发生扰动以后,可能会影响决策树这个依托信息增益产生的精密系统.

最简单粗暴的方法就是,训练多个树,形成一个森林.但是一个数据集合练出来的树是一样的,没啥必要,所以我们产生了随机森林算法.

sampling with replacement(放回抽样)这东西我们在高中就学过,所以这里不加简述了.我们要做的就是确定一个规模,比如10,每次从原始数据集中抽取10个案例,然后用来训练一棵树.

如此循环多次,我们就能得到多个决策树,组成一个森林,这其中难免会有一些决策树是一样的,我们忽视掉它

这样我们计算结果的时候,要考虑到整个森林所有树木的输出效果,然后综合考虑我们怎样确定输出效果 

XGBoost算法和使用

在众多随机森林算法中,XGBoost是一种使用很广泛的随机森林算法,并且XGBoost也是一个开源库(不是放在tf或者pytorch的库中的).XGBoost非常像我们之前聊过的增强算法(啥,哦博客还没写出来,8好意思,尽快补上)

XGBoost算法和普通决策树的区别在于放回抽样的不疯魔,传统的决策树是平等地抽取,xgb算法则是会根据上一次,估计错了哪些数值,在本次抽取中优先提取上一次参与训练并且估计失败的数值案例.

比如

 构建某一次决策树的时候,2,6,8号数据估计错误,则下一次会优先提取出这些作为训练案例之一.

当然这些主要是底层实现了(注意对应的函数从xgboost包中导入,这个包需要提前下载)

下面来看一下具体的使用案例.

pip3 install xgboost
#xgboost算法 这里没有使用训练集合什么de
# 定义特征矩阵和标签
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([0, 0, 1, 1])# 创建并训练模型
model = XGBClassifier()
model.fit(X, y)# 预测一个数据
data_to_predict = np.array([[2, 3]])
prediction = model.predict(data_to_predict)print(f"预测结果: {prediction}")#xgboost算法 这里没有使用训练集合什么de
# 定义特征矩阵和标签
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([0, 0, 1, 1])# 创建并训练模型
model = XGBClassifier()
model.fit(X, y)# 预测一个数据
data_to_predict = np.array([[2, 3]])
prediction = model.predict(data_to_predict)print(f"预测结果: {prediction}")

和神经网络有什么区别捏?

相比于神经网络来说,决策树和随机森林算法更适合一些有固定相似数据结构的数据集合.换句话说,更容易处理那种可以形成表格的数据.

而神经网络则用来处理一些非相似结构的数据,这一点就是他们的主要区别

决策树同样是一种很重要的监督学习算法.

关于baseline(未完待续)

baseline是一种基于决策树的大模型,适用于多重二元分析等操作,在竞赛和论文中应用很广泛.

(至少与我们之前用到tensorflow要广泛.....tf都快开摆了)

不过这个模型我现在也不是很熟悉,仅仅是停留在"用过"这个层面上,后面有机会我会继续在这里补充这个模型的使用和优缺点,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/43114.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法学习】两数之和II - 输入有序数组

题目描述 原题链接 给你一个下标从 1 开始的整数数组 numbers &#xff0c;该数组已按 非递减顺序排列 &#xff0c;请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] &#xff0c;则 1 < index1 < …

Springboot MultipartFile文件上传与下载

yml文件配置是否可以上传及上传附件大小 servlet:multipart:# 允许文件上传enabled: true# 单个文件大小max-file-size: 20MB# 设置总上传的文件大小max-request-size: 50MB /*** param files* param request* Description 上传文件* Throws* Return java.util.List* Date 202…

动手学深度学习—卷积神经网络LeNet(代码详解)

1. LeNet LeNet由两个部分组成&#xff1a; 卷积编码器&#xff1a;由两个卷积层组成&#xff1b;全连接层密集块&#xff1a;由三个全连接层组成。 每个卷积块中的基本单元是一个卷积层、一个sigmoid激活函数和平均汇聚层&#xff1b;每个卷积层使用55卷积核和一个sigmoid激…

LeetCode--HOT100题(35)

目录 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09;题目接口解题思路1代码解题思路2代码 PS: 题目描述&#xff1a;23. 合并 K 个升序链表&#xff08;困难&#xff09; 给你一个链表数组&#xff0c;每个链表都已经按升序排列。 请你将所有链表合…

UDP 的报文结构以及注意事项

UDP协议 1.UDP协议端格式 1.图中的16位UDP长度,表示整个数据报(UDP首部UDP数据)的最大长度 2.若校验和出错,会直接丢弃 2.UDP的报文结构 UDP报文主体分为两个部分:UDP报头(占8个字节)UDP载荷/UDP数据 1.源端口号 16位,2个字节 2.目的端口号 16位,2个字节 3.包长度 指示了…

sd-webui安装comfyui扩展

文章目录 导读ComfyUI 环境安装1. 安装相关组件2. 启动sd-webui3. 访问sd-webui 错误信息以及解决办法 导读 这篇文章主要给大家介绍如何在sd-webui中来安装ComfyUI插件 ComfyUI ComfyUI是一个基于节点流程式的stable diffusion的绘图工具&#xff0c;它集成了stable diffus…

什么是闭包(closure)?为什么它在JavaScript中很有用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 闭包&#xff08;Closure&#xff09;是什么&#xff1f;⭐ 闭包的用处⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…

windows10 安装WSL2, Ubuntu,docker

AI- 通过docker开发调试部署ChatLLM 阅读时长&#xff1a;10分钟 本文内容&#xff1a; window上安装ubuntu虚拟机&#xff0c;并在虚拟机中安装docker&#xff0c;通过docker部署数字人模型&#xff0c;通过vscode链接到虚拟机进行开发调试.调试完成后&#xff0c;直接部署在云…

变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践

目录导读 变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践1. 什么是变更通知2. 变更通知的场景分析3. 变更通知的技术方案3.1 变更通知的技术实现方案 4. 变更通知的最佳实践总结5. 参考资料 变更通知在开源SpringBoot/SpringCloud微服务中的最佳实践 1. 什么是变更通…

Ubuntu在自己的项目中使用pcl

1、建立一个文件夹&#xff0c;如pcl_demos&#xff0c;里面建立一个.cpp文件和一个cmake文件 2、打开终端并进入该文件夹下&#xff0c;建立一个build文件夹存放编译的结果并进入该文件夹 3、对上一级进行编译 cmake .. 4、生成可执行文件 make 5、运行该可执行文件 6、可视…

微服务中间件-分布式缓存Redis

分布式缓存 a.Redis持久化1) RDB持久化1.a) RDB持久化-原理 2) AOF持久化3) 两者对比 b.Redis主从1) 搭建主从架构2) 数据同步原理&#xff08;全量同步&#xff09;3) 数据同步原理&#xff08;增量同步&#xff09; c.Redis哨兵1) 哨兵的作用2) 搭建Redis哨兵集群3) RedisTem…

金融语言模型:FinGPT

项目简介 FinGPT是一个开源的金融语言模型&#xff08;LLMs&#xff09;&#xff0c;由FinNLP项目提供。这个项目让对金融领域的自然语言处理&#xff08;NLP&#xff09;感兴趣的人们有了一个可以自由尝试的平台&#xff0c;并提供了一个与专有模型相比更容易获取的金融数据。…

VS2015项目中,MFC内存中调用DLL函数(VC6生成的示例DLL)

本例主要讲一下&#xff0c;用VC6如何生成DLL&#xff0c;用工具WinHex取得DLL全部内容&#xff0c;VC2015项目加载内存中的DLL函数&#xff0c;并调用函数的示例。 本例中的示例代码下载&#xff0c;点击可以下载 一、VC6.0生成示例DLL项目 1.新建项目&#xff0c;…

SQL Server Express 自动备份方案

文章目录 SQL Server Express 自动备份方案前言方案原理SQL Server Express 自动备份1.创建存储过程2.设定计划任务3.结果检查sqlcmd 参数说明SQL Server Express 自动备份方案 前言 对于许多小型企业和个人开发者来说,SQL Server Express是一个经济实惠且强大的数据库解决方…

Spring Framework中的Bean生命周期

目录 一.Bean生命周期的简介 1.基本概念 2.Spring生命周期的几大阶段 3.注意点及小结 4.生活案例 5.Spring容器管理JavaBean的初始化过程 二. Bean的单例选择与多例选择 1.单例选择与多例选择的优缺点 1.1单例模式的优点&#xff1a; 1.2单例模式的缺点&#xff1a; 1…

JDK 8 升级 JDK 17 全流程教学指南

JDK 8 升级 JDK 17 首先已有项目升级是会经历一个较长的调试和自测过程来保证允许和兼容没有问题。先说几个重要的点 遇到问题别放弃仔细阅读报错&#xff0c;精确到每个单词每一行&#xff0c;不是自己项目的代码也要点进去看看源码到底是为啥报错明确你项目引入的包&#x…

第三届“赣政杯”网络安全大赛 | 赛宁筑牢安全应急防线

​​为持续强化江西省党政机关网络安全风险防范意识&#xff0c;提高信息化岗位从业人员基础技能&#xff0c;提升应对网络安全风险处置能力。由江西省委网信办、江西省发展改革委主办&#xff0c;江西省大数据中心、国家计算机网络与信息安全管理中心江西分中心承办&#xff0…

Qt扫盲-QTableView理论总结

QTableView理论总结 一、概述二、导航三、视觉外观四、坐标系统五、示例代码1. 性别代理2. 学生信息模型3. 对应视图 一、概述 QTableView实现了一个tableview 来显示model 中的元素。这个类用于提供之前由QTable类提供的标准表&#xff0c;但这个是使用Qt的model/view架构提供…

MySQL 存储过程

create procedure 存储过程名 &#xff08;in | out | INPUT 参数名 参数类型&#xff0c;。。。&#xff09; 【characteristics 。。。】begin存储过程体end存储过程的参数类型 IN 、OUT、INPUT 都可以在一个存储过程带多个 没有参数&#xff08;无参数无返回&#xff09;仅…

边缘网络的作用及管理工具

自从引入软件即服务 &#xff08;SaaS&#xff09; 以来&#xff0c;它一直引领着全球按需软件部署创新的竞赛&#xff0c;它提供的灵活性以及其云计算架构带来的易于集成使其成为交付业务应用程序的标准。 在 SaaS 模型中&#xff0c;最佳用户体验的三重奏涉及无缝设置、低延…