第三十七期:刷脸支付叫好不叫座,为啥消费者和商家都不愿用先进科技?

移动支付相信大多数人都不陌生,中国移动支付的普及被人称为“新四大发明”,在中国移动支付产品发展如火如荼的今天,刷脸支付成为了新的时尚,然而这个时尚的支付方式却显得叫好不叫座,刷脸支付的问题到底出在哪了?

 

移动支付相信大多数人都不陌生,中国移动支付的普及被人称为“新四大发明”,在中国移动支付产品发展如火如荼的今天,刷脸支付成为了新的时尚,然而这个时尚的支付方式却显得叫好不叫座,刷脸支付的问题到底出在哪了?为啥老百姓反而不待见这种高科技产品呢?

一、叫好不叫座的刷脸支付

根据10月9日中国之声的报道,北京一家便利店今年上半年安装了刷脸支付设备,一直很少有人使用。老板称:上半年大概4、5月份的时候装了这个设备,顾客都不太用,使用率不高,因为刷脸支付也得再去打开手机接收验证码,所以还不如直接扫二维码更直接更方便。记者随机采访了几位消费者,大部分表示很少使用刷脸支付设备,并对刷脸支付的安全性表示担忧。

国庆过后,#刷脸支付风险#这一话题突然登上微博热搜,引发了市场的广泛关注。根据北京日报的报道,自2018年刷脸支付商业化以来,支付宝和微信支付相继推出刷脸设备“蜻蜓”与“青蛙”。9月24日,支付宝宣布,将今年4月发布的30亿元市场刷脸支付补贴改为“无上限投入”。这一政策被业内广泛解读为是对网传微信刷脸支付百亿补贴的回应。记者注意到,此前在各大社交平台上,不断有多个服务商以支付宝、微信两大巨头百亿元补贴刷脸支付作为推广噱头。

目前支付宝方面对其最新宣布的刷脸支付“无上限投入”政策,解释为不仅仅是补贴,“补贴是一部分,但还包括营销费用、研发费用和对有科技能力的公司的投资计划等。”微信支付方面则表示,对刷脸支付服务商的补贴将主要基于硬件设备结合刷脸支付笔数的奖励。

一方面是支付宝、微信不惜一切代价猛推的刷脸支付,另一方面却是大多数人不愿意使用的事实,这其中的原因到底是什么?

二、刷脸支付为啥大家都不待见?

其实,刷脸支付不被待见是一件意料之中的事情,我们不妨从多个角度来看待这件事:

首先,支付产业的发展历程一定是越来越便宜。对于支付产业的发展角度来看,我们看到人类所使用的货币从最早的黄金白银与方孔铜钱,变成了当前的现金纸币,再从现金纸币变成了支票和银行卡,最后再从银行卡变成了当前的移动支付。其实,仔细研究这个发展历程背后的规律就会发现,支付一定会向着成本越来越低的方向发展,相比于黄金白银和铜钱,纸币所代表的使用便利程度远超金属货币,从而带动了全世界商品经济的流通,世界市场开始出现。而从纸币演化成了以银行卡为代表的电子货币之后,银行卡所带动的货币电子化直接把纸币的交易成本又降低了三分之二,从而带动了经济全球化的高速发展。

而移动支付则是借助银行卡所构建的支付网络之上进一步把账户虚拟化,实现了账户从有形实体卡向无形的手机支付账户的转变,而移动支付的成本进一步降低,一张A4纸打印的二维码就能够实现移动支付,这种几乎为零的成本让移动支付得以快速普及。与此同时,移动支付又把之前专业的机具POS机进一步简化成为几乎所有收银台都必备的扫码枪,这样让机具从专业化转向通用化,要不你随便拿台手机,要不你随手拿个扫码枪就完成了支付的全过程。在这样的情况下,这种足够低价的支付方式才能够实现支付的全面跨时代演变。

但是我们如果把这个逻辑回过头来看刷脸支付,就会发现问题来了,刷脸支付完全成为了一个反向的东西,本来用刷脸支付的成本可以更低,因为我们身上的身体器官不仅是与生俱来的,而且不需要手机,甚至连那张A4纸都不需要。但是实际上,刷脸支付想要实现支付不仅放弃了原先被简化的手机、扫码枪,反而装了一个个价格高昂的专用机具,这种机具的存在必然会让刷脸的成本越来越高在,这样逆逻辑的做法必然会导致推广的困难,谁都不会愿意让一种本来简化的支付方式进一步复杂化。

其次,刷脸支付的用户体验其实并不好。刷脸支付其实这种支付方式是非常奇葩的一种操作,原先是刷脸支付的本身目的是减少手机的使用,真正做到我一个人出门啥都不带都能支付,但是实际上的操作流程却是:你到了一台刷脸终端,不仅需要刷脸还需要输入手机号,甚至有的时候还需要交叉发送短信验证,这种交叉认证、多重认证的模式虽然保证了一定程度的安全,但实际上反而把刷脸支付的优势给丧失掉了,最终导致用户体验并不好。用户体验可以说是移动支付的根本,一个用户体验不好的移动支付产品必然也难以获得用户的认同。

第三,刷脸支付的风险让人难以放心。刷脸支付其实最大的问题就是风险放心问题,这里是风险放心问题而不是风险问题,为什么说是风险放心问题呢?最核心的根源是,相比于刷脸支付这种生物识别支付方式,其实二维码支付的风险可能更大一些,但是因为经过了长期的使用,最终的结果发现,虽然静态二维码有一定的风险,但是动态二维码的风险基本可控,也正是如此,大多数时候我们都建议大家打开自己的二维码让别人去扫,而不是自己去扫别人贴的二维码。

而生物识别方面,特别是刷脸支付方面风险是比二维码的风险更小的,但是问题在于,刷脸支付需要将人脸等大量的生物识别信息上送,一旦这个信息被不法分子利用,这就不仅仅是账户安全问题,甚至是隐私保护问题了,大量的个人用户隐私被上传到一个民营机构的服务器中的话,其实大多数人也都难以放心,所以风险放心问题成了刷脸支付问题的主要根源。

整体来看,刷脸支付虽然看上去很好,但是离真正的全面落地还有一定的距离,如果刷脸支付的成本问题和用户体验问题以及用户放心问题没能得到根本解决的话,刷脸支付想要普及还是非常困难的事情。


阅读目录(置顶)(长期更新计算机领域知识)https://blog.csdn.net/weixin_43392489/article/details/102380691

阅读目录(置顶)(长期更新计算机领域知识)https://blog.csdn.net/weixin_43392489/article/details/102380882

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/425050.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop 配置文件 启动方式

配置文件: 默认的配置文件:相对应的jar 中 core-default.xml hdfs-default.xml yarn-default.xml mapred-default.xml 自定义配置文件$HADOOP_HOME/etc/hadoop/ core.site.xml hdfs-site.xml yarn-site.xml mapredu-site.xml 启动方式: 各个服…

第二章 随机变量

随机变量  目标:将实验结果数量化。实验结构有数字型和非数字型。数字型:降雨量、上车人数等。非数字型:晴天/阴天/下雨、化验结果阴性/阳性等。  定义:随机试验样本空间S,如果XX(e)为定义在S上的实数单值函数&…

[Leetcode][第632题][JAVA][最小区间][堆][滑动窗口]

【问题描述】[困难] 【解答思路】 1. 堆 复杂度 class Solution {public int[] smallestRange(List<List<Integer>> nums) {//区间的左边和右边int rangeLeft 0, rangeRight Integer.MAX_VALUE;//最小范围int minRange rangeRight - rangeLeft;//区间的左边最…

第十期:过去50年间,十大热门语言及发明者大盘点

本文收集了十大热门编程语言背后的程序员和设计者的名字和大家分享。以下是十大热门编程语言及其创建者&#xff0c;排名不分先后。 软件领域有许多编程语言&#xff0c;每年还涌现出越来越的新语言。新发布的语言有Scala、Kotlin、Go和Closure&#xff0c;但历史证明&#xff…

2018-2019-2 20165212《网络攻防技术》Exp5 MSF基础应用

2018-2019-2 20165212《网络攻防技术》Exp5 MSF基础应用 攻击成果 主动攻击的实践 ms17010eternalblue payload windows/x64/meterpreter/reverse_tcp&#xff08;成功&#xff09;payload generic/shellreversetcp&#xff08;成功&#xff09;ms17010psexec&#xff08;成功且…

【数据结构与算法】复杂度分析

一、什么是复杂度分析&#xff1f; 1.数据结构和算法解决是“如何让计算机更快时间、更省空间的解决问题”。 2.因此需从执行时间和占用空间两个维度来评估数据结构和算法的性能。 3.分别用时间复杂度和空间复杂度两个概念来描述性能问题&#xff0c;二者统称为复杂度。 4.复杂…

第十一期:30秒内便能学会的30个实用Python代码片段

许多人在数据科学、机器学习、web开发、脚本编写和自动化等领域中都会使用Python&#xff0c;它是一种十分流行的语言。 Python流行的部分原因在于简单易学。 本文将简要介绍30个简短的、且能在30秒内掌握的代码片段。 1. 唯一性 以下方法可以检查给定列表是否有重复的地方&…

使用scikit中的聚类

这是一次数据实验。基于七月算法邹博讲义和scikit-lean官网。 聚类&#xff1a;就是对大量未知标注的数据集&#xff0c;按数据的内在相似性将数据划分为多个类别&#xff0c;使得类别内的数据相似性较大而类别间的相似性较小。 1 k-means算法  参数&#xff1a;聚类的数目…

概率中比较重要的知识

-什么是协方差&#xff1f; 就是衡量两个随机变量&#xff08;X,YX,YX,Y&#xff09;之间相关性的量&#xff0c;取多个两个量的样本&#xff0c;通过判断他们大小变化关系&#xff0c;判断这两个量是正相关还是负相关或无相关。 记做&#xff1a;Cov(X,Y)E[(X−E(X))(Y−E(Y)…

MySQL学习(三)

-- 计算字段 -- 拼接字段 SELECT CONCAT(vend_name, (,vend_country,)) FROM Vendors ORDER BY vend_name;SELECT CONCAT(vend_name,vend_country) FROM Vendors ORDER BY vend_name;-- CONCAT(str1,str2,...) 拼接查询的值 SELECT CONCAT(vend_name,vend_country) FROM Vendo…

[Leetcode][第114题][JAVA][二叉树展开为链表][递归][迭代]

【问题描述】[中等] 【解答思路】 1. 前序遍历 将二叉树展开为单链表之后&#xff0c;单链表中的节点顺序即为二叉树的前序遍历访问各节点的顺序。因此&#xff0c;可以对二叉树进行前序遍历&#xff0c;获得各节点被访问到的顺序。 由于将二叉树展开为链表之后会破坏二叉树的…

第三十八期:美国数据隐私保护法案来临,明年1月生效,现仅2%企业合规

2018 年美国加州通过消费者隐私法案&#xff08;CCPA&#xff09;&#xff0c;缓冲一年多后&#xff0c;将于 2020 年 1 月生效。届时&#xff0c;类似于欧盟的法案&#xff0c;CCPA 将对所有和美国加州居民有业务的数据商业行为进行监管。 依然在应付欧盟数据保护法案(GDPR)的…

二元随机变量

本章记录  1二元随机变量的定义  2二元离散型随机变量的定义、联合概率分布律、边际分布律、条件分布律  3二元离散型随机变量联合概率分布律函数、边际分布函数、条件分布函数  4二元连续型随机变量的定义、联合概率密度函数、边际密度函数、条件密度函数 二元随机变…

深度学习:什么是backbone,benchmark,baseline

backbone&#xff1a;骨干网络&#xff0c;比如alexnet&#xff0c;ZFnet&#xff0c;VGG&#xff0c;googlenet... benchmark&#xff1a;性能指标&#xff0c;比如accuracy&#xff0c;内存消耗&#xff0c;模型复杂度&#xff0c;或者在性能上很有代表性的算法框架。 base…

6.mysql 锁机制

概述 定义&#xff1a; 锁是计算机协调多个进程或者线程并发访问某一资源的机制 在数据库中&#xff0c;除传统的计算资源&#xff08;如CPU,RAM,IO等&#xff09;的争用以外&#xff0c;数据也是一种供许多用户共享的资源。如何保证数据并发 访问的一致性、有效性是所有数据库…

第三十九期:原生图数据库的15条规则

不妨看一下原生图形数据库的15条规则。就像复杂的系统网格或空中交通管制图&#xff0c;图形数据库用节点和连接组成的网络(名为标记属性图)来表示。节点显示为圆形或正方形&#xff0c;代表人员、产品、公司或订单等实体。 就像复杂的系统网格或空中交通管制图&#xff0c;图形…

[周赛第200场][Leetcode][第5477题][第5478题][JAVA][双指针][贪心]

【问题描述】[中等]5477. 排布二进制网格的最少交换次数 【解答思路】 贪心 限制条件 第一行要求末尾的0要尽量多 计算每行最后有几个0遍历交互 符合条件 第i行的末尾0的数量为n-i-1 统计交换次数第i行的末尾0的数量小于n-i-1&#xff0c;不符合条件 时间复杂度&#xff1a…

ubuntu异常关机,断电重启后进入紧急模式,挂载磁盘SSD失败了怎么办?(Failed mount on XXX)

解决方案&#xff1a; 进入/etc/fstab中保留你所有的除了必要的系统分区挂载点&#xff0c;这里保存了所有开机引导的时候自动挂载到linux文件系统里的设备还有分区信息&#xff0c;当系统启动的时候&#xff0c;系统会在这里读取信息并挂载到相应目录下。所有的磁盘硬盘SSD挂…

476 Number Complement

问题&#xff1a;给定一个整数&#xff0c;返回它的补数。补数的是将原数据的二进制表示反转。例如 5 的二进制位是 101&#xff0c;反转之后是&#xff1a;010&#xff0c;也就是整数2。所以输入5&#xff0c;返回2.。输入1&#xff0c;返回0。  思路&#xff1a;取反操作是…

设单链表中存放n个字符,试设计一个算法,使用栈推断该字符串是否中心对称...

版权声明&#xff1a;本文为博主原创文章。未经博主同意不得转载。vasttian https://blog.csdn.net/u012860063/article/details/28281631 转载请注明出处&#xff1a;http://blog.csdn.net/u012860063 问题&#xff1a;设单链表中存放n个字符&#xff0c;试设计一个算法&#…