Java常用的八种排序算法与代码实现

 

排序问题一直是程序员工作与面试的重点,今天特意整理研究下与大家共勉!这里列出8种常见的经典排序,基本涵盖了所有的排序算法。

1.直接插入排序

      我们经常会到这样一类排序问题:把新的数据插入到已经排好的数据列中。将第一个数和第二个数排序,然后构成一个有序序列将第三个数插入进去,构成一个新的有序序列。对第四个数、第五个数……直到最后一个数,重复第二步。如题所示:

直接插入排序(Straight Insertion Sorting)的基本思想:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。

代码实现:

首先设定插入次数,即循环次数,for(int i=1;i<length;i++),1个数的那次不用插入。

设定插入数和得到已经排好序列的最后一个数的位数。insertNum和j=i-1。

从最后一个数开始向前循环,如果插入数小于当前数,就将当前数向后移动一位。

将当前数放置到空着的位置,即j+1。

代码如下:

复制代码
 1 public void insertSort(int [] a){2         int len=a.length;//单独把数组长度拿出来,提高效率3         int insertNum;//要插入的数4         for(int i=1;i<len;i++){//因为第一次不用,所以从1开始5             insertNum=a[i];6             int j=i-1;//序列元素个数7             while(j>=0&&a[j]>insertNum){//从后往前循环,将大于insertNum的数向后移动8                 a[j+1]=a[j];//元素向后移动9                 j--;
10             }
11             a[j+1]=insertNum;//找到位置,插入当前元素
12         }
13     }
复制代码

2.希尔排序

      针对直接插入排序的下效率问题,有人对次进行了改进与升级,这就是现在的希尔排序。希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。

希尔排序是基于插入排序的以下两点性质而提出改进方法的:

  • 插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率
  • 但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位

如图所示:

对于直接插入排序问题,数据量巨大时。

将数的个数设为n,取奇数k=n/2,将下标差值为k的数分为一组,构成有序序列。

再取k=k/2 ,将下标差值为k的书分为一组,构成有序序列。

重复第二步,直到k=1执行简单插入排序。 

代码实现:

首先确定分的组数。

然后对组中元素进行插入排序。

然后将length/2,重复1,2步,直到length=0为止。

复制代码
 1 public void sheelSort(int [] a){2         int len=a.length;//单独把数组长度拿出来,提高效率3         while(len!=0){4             len=len/2;5             for(int i=0;i<len;i++){//分组6                 for(int j=i+len;j<a.length;j+=len){//元素从第二个开始7                     int k=j-len;//k为有序序列最后一位的位数8                     int temp=a[j];//要插入的元素9                     /*for(;k>=0&&temp<a[k];k-=len){
10                         a[k+len]=a[k];
11                     }*/
12                     while(k>=0&&temp<a[k]){//从后往前遍历
13                         a[k+len]=a[k];
14                         k-=len;//向后移动len位
15                     }
16                     a[k+len]=temp;
17                 }
18             }
19         }
20     }
复制代码

3.简单选择排序

常用于取序列中最大最小的几个数时。

(如果每次比较都交换,那么就是交换排序;如果每次比较完一个循环再交换,就是简单选择排序。)

遍历整个序列,将最小的数放在最前面。

遍历剩下的序列,将最小的数放在最前面。

重复第二步,直到只剩下一个数。

代码实现:

首先确定循环次数,并且记住当前数字和当前位置。

将当前位置后面所有的数与当前数字进行对比,小数赋值给key,并记住小数的位置。

比对完成后,将最小的值与第一个数的值交换。

重复2、3步。

复制代码
 1 public void selectSort(int[]a){2         int len=a.length;3         for(int i=0;i<len;i++){//循环次数4             int value=a[i];5             int position=i;6             for(int j=i+1;j<len;j++){//找到最小的值和位置7                 if(a[j]<value){8                     value=a[j];9                     position=j;
10                 }
11             }
12             a[position]=a[i];//进行交换
13             a[i]=value;
14         }
15     }
复制代码

4.堆排序

对简单选择排序的优化。

将序列构建成大顶堆。

将根节点与最后一个节点交换,然后断开最后一个节点。

重复第一、二步,直到所有节点断开。

 

代码如下:

复制代码
 1 public  void heapSort(int[] a){2            int len=a.length;3            //循环建堆  4            for(int i=0;i<len-1;i++){5                //建堆  6                buildMaxHeap(a,len-1-i);7                //交换堆顶和最后一个元素  8                swap(a,0,len-1-i);9            }
10        }
11         //交换方法
12        private  void swap(int[] data, int i, int j) {
13            int tmp=data[i];
14            data[i]=data[j];
15            data[j]=tmp;
16        }
17        //对data数组从0到lastIndex建大顶堆  
18        private void buildMaxHeap(int[] data, int lastIndex) {
19            //从lastIndex处节点(最后一个节点)的父节点开始  
20            for(int i=(lastIndex-1)/2;i>=0;i--){
21                //k保存正在判断的节点  
22                int k=i;
23                //如果当前k节点的子节点存在  
24                while(k*2+1<=lastIndex){
25                    //k节点的左子节点的索引  
26                    int biggerIndex=2*k+1;
27                    //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在  
28                    if(biggerIndex<lastIndex){
29                        //若果右子节点的值较大  
30                        if(data[biggerIndex]<data[biggerIndex+1]){
31                            //biggerIndex总是记录较大子节点的索引  
32                            biggerIndex++;
33                        }
34                    }
35                    //如果k节点的值小于其较大的子节点的值  
36                    if(data[k]<data[biggerIndex]){
37                        //交换他们  
38                        swap(data,k,biggerIndex);
39                        //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值  
40                        k=biggerIndex;
41                    }else{
42                        break;
43                    }
44                }
45            }
46        }
复制代码

5.冒泡排序

很简单,用到的很少,据了解,面试的时候问的比较多!

将序列中所有元素两两比较,将最大的放在最后面。

将剩余序列中所有元素两两比较,将最大的放在最后面。

重复第二步,直到只剩下一个数。

代码实现:

设置循环次数。

设置开始比较的位数,和结束的位数。

两两比较,将最小的放到前面去。

重复2、3步,直到循环次数完毕。

 

复制代码
 1  public void bubbleSort(int []a){2            int len=a.length;3            for(int i=0;i<len;i++){4                for(int j=0;j<len-i-1;j++){//注意第二重循环的条件5                    if(a[j]>a[j+1]){6                        int temp=a[j];7                        a[j]=a[j+1];8                        a[j+1]=temp;9                    }
10                }
11            }
12        }
复制代码

6.快速排序

要求时间最快时。

选择第一个数为p,小于p的数放在左边,大于p的数放在右边。

递归的将p左边和右边的数都按照第一步进行,直到不能递归。

 

复制代码
 1 public void quickSort(int[]a,int start,int end){2            if(start<end){3                int baseNum=a[start];//选基准值4                int midNum;//记录中间值5                int i=start;6                int j=end;7                do{8                    while((a[i]<baseNum)&&i<end){9                        i++;
10                    }
11                    while((a[j]>baseNum)&&j>start){
12                        j--;
13                    }
14                    if(i<=j){
15                        midNum=a[i];
16                        a[i]=a[j];
17                        a[j]=midNum;
18                        i++;
19                        j--;
20                    }
21                }while(i<=j);
22                 if(start<j){
23                     quickSort(a,start,j);
24                 }       
25                 if(end>i){
26                     quickSort(a,i,end);
27                 }
28            }
29        }
复制代码

7.归并排序

速度仅次于快速排序,内存少的时候使用,可以进行并行计算的时候使用。

选择相邻两个数组成一个有序序列。

选择相邻的两个有序序列组成一个有序序列。

重复第二步,直到全部组成一个有序序列。

复制代码
 1 public  void mergeSort(int[] a, int left, int right) {  2            int t = 1;// 每组元素个数  3            int size = right - left + 1;  4            while (t < size) {  5                int s = t;// 本次循环每组元素个数  6                t = 2 * s;  7                int i = left;  8                while (i + (t - 1) < size) {  9                    merge(a, i, i + (s - 1), i + (t - 1));  
10                    i += t;  
11                }  
12                if (i + (s - 1) < right)  
13                    merge(a, i, i + (s - 1), right);  
14            }  
15         }  
16        
17         private static void merge(int[] data, int p, int q, int r) {  
18            int[] B = new int[data.length];  
19            int s = p;  
20            int t = q + 1;  
21            int k = p;  
22            while (s <= q && t <= r) {  
23                if (data[s] <= data[t]) {  
24                    B[k] = data[s];  
25                    s++;  
26                } else {  
27                    B[k] = data[t];  
28                    t++;  
29                }  
30                k++;  
31            }  
32            if (s == q + 1)  
33                B[k++] = data[t++];  
34            else  
35                B[k++] = data[s++];  
36            for (int i = p; i <= r; i++)  
37                data[i] = B[i];  
38         }
复制代码

8.基数排序

用于大量数,很长的数进行排序时。

将所有的数的个位数取出,按照个位数进行排序,构成一个序列。

将新构成的所有的数的十位数取出,按照十位数进行排序,构成一个序列。

 代码实现:

复制代码
 1 public void baseSort(int[] a) {2                //首先确定排序的趟数;    3                int max = a[0];4                for (int i = 1; i < a.length; i++) {5                    if (a[i] > max) {6                        max = a[i];7                    }8                }9                int time = 0;
10                //判断位数;    
11                while (max > 0) {
12                    max /= 10;
13                    time++;
14                }
15                //建立10个队列;    
16                List<ArrayList<Integer>> queue = new ArrayList<ArrayList<Integer>>();
17                for (int i = 0; i < 10; i++) {
18                    ArrayList<Integer> queue1 = new ArrayList<Integer>();
19                    queue.add(queue1);
20                }
21                //进行time次分配和收集;    
22                for (int i = 0; i < time; i++) {
23                    //分配数组元素;    
24                    for (int j = 0; j < a.length; j++) {
25                        //得到数字的第time+1位数;  
26                        int x = a[j] % (int) Math.pow(10, i + 1) / (int) Math.pow(10, i);
27                        ArrayList<Integer> queue2 = queue.get(x);
28                        queue2.add(a[j]);
29                        queue.set(x, queue2);
30                    }
31                    int count = 0;//元素计数器;    
32                    //收集队列元素;    
33                    for (int k = 0; k < 10; k++) {
34                        while (queue.get(k).size() > 0) {
35                            ArrayList<Integer> queue3 = queue.get(k);
36                            a[count] = queue3.get(0);
37                            queue3.remove(0);
38                            count++;
39                        }
40                    }
41                }
42         }
复制代码

新建测试类进行测试

复制代码
 1 public class TestSort {2     public static void main(String[] args) {3         int []a=new int[10];4         for(int i=1;i<a.length;i++){5             //a[i]=(int)(new Random().nextInt(100));6             a[i]=(int)(Math.random()*100);7         }8         System.out.println("排序前的数组为:"+Arrays.toString(a));9         Sort s=new Sort();
10         //排序方法测试
11         //s.insertSort(a);
12         //s.sheelSort(a);
13         //s.selectSort(a);
14         //s.heapSort(a);
15         //s.bubbleSort(a);
16         //s.quickSort(a, 1, 9);
17         //s.mergeSort(a, 3, 7);
18         s.baseSort(a);
19         System.out.println("排序后的数组为:"+Arrays.toString(a));
20     }
21 
22 }
复制代码

部分结果如下:

如果要进行比较可已加入时间,输出排序时间,从而比较各个排序算法的优缺点,这里不再做介绍。

8.总结:

一、稳定性:

    稳定:冒泡排序、插入排序、归并排序和基数排序

  不稳定:选择排序、快速排序、希尔排序、堆排序

二、平均时间复杂度

  O(n^2):直接插入排序,简单选择排序,冒泡排序。

  在数据规模较小时(9W内),直接插入排序,简单选择排序差不多。当数据较大时,冒泡排序算法的时间代价最高。性能为O(n^2)的算法基本上是相邻元素进行比较,基本上都是稳定的。

  O(nlogn):快速排序,归并排序,希尔排序,堆排序。

  其中,快排是最好的, 其次是归并和希尔,堆排序在数据量很大时效果明显。

三、排序算法的选择

  1.数据规模较小

    (1)待排序列基本序的情况下,可以选择直接插入排序

    (2)对稳定性不作要求宜用简单选择排序,对稳定性有要求宜用插入或冒泡

  2.数据规模不是很大

  (1)完全可以用内存空间,序列杂乱无序,对稳定性没有要求,快速排序,此时要付出log(N)的额外空间。

  (2)序列本身可能有序,对稳定性有要求,空间允许下,宜用归并排序

  3.数据规模很大

     (1)对稳定性有求,则可考虑归并排序。

      (2)对稳定性没要求,宜用堆排序

  4.序列初始基本有序(正序),宜用直接插入,冒泡

 各算法复杂度如下:

 

 部分参考资料来源于:

  http://blog.csdn.net/without0815/article/details/7697916

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

熊猫ai智能机器人量化_机器学习中的熊猫是什么

熊猫ai智能机器人量化Machine learning is a complex discipline. The implementation of machine learning models is now far much easier than it used to be, this is as a result of Machine learning frameworks such as pandas. Wait!! isnt panda an animal? As I rec…

441. 排列硬币

441. 排列硬币 你总共有 n 枚硬币&#xff0c;并计划将它们按阶梯状排列。对于一个由 k 行组成的阶梯&#xff0c;其第 i 行必须正好有 i 枚硬币。阶梯的最后一行 可能 是不完整的。 给你一个数字 n &#xff0c;计算并返回可形成 完整阶梯行 的总行数。 示例 1&#xff1a;…

调用百度 Echarts 显示重庆市地图

因为 Echarts 官方不再提供地图数据的下载&#xff0c;在这里保存一份&#xff0c;供日后使用&#xff0c;重庆地图数据的 JSON 文件在 CSDN 上下载。 <!DOCTYPE html> <html style"height: 100%"><head><meta charset"utf-8"><…

JEESZ-SSO解决方案

2019独角兽企业重金招聘Python工程师标准>>> 第一节&#xff1a;单点登录简介 第一步&#xff1a;了解单点登录 SSO主要特点是: SSO应用之间使用Web协议(如HTTPS)&#xff0c;并且只有一个登录入口. SSO的体系中有下面三种角色: 1) User(多个) 2) Web应用(多个) 3) …

女朋友天天气我怎么办_关于我的天气很奇怪

女朋友天天气我怎么办带有扭曲的天气应用 (A Weather App with a Twist) Is My Weather Weird?™ is a weather app with a twist — it offers a simple answer to a common question we’ve all asked. To do this we look at how often weather like today’s used to happ…

5895. 获取单值网格的最小操作数

5895. 获取单值网格的最小操作数 给你一支股票价格的数据流。数据流中每一条记录包含一个 时间戳 和该时间点股票对应的 价格 。 不巧的是&#xff0c;由于股票市场内在的波动性&#xff0c;股票价格记录可能不是按时间顺序到来的。某些情况下&#xff0c;有的记录可能是错的…

为什么要用Redis

最近阅读了《Redis开发与运维》&#xff0c;非常不错。这里对书中的知识整理一下&#xff0c;方便自己回顾一下Redis的整个体系&#xff0c;来对相关知识点查漏补缺。我按照五点把书中的内容进行一下整理&#xff1a;为什么要选择Redis&#xff1a;介绍Redis的使用场景与使用Re…

区块链开发公司谈区块链在商业上的应用

对于近期正受科技界和资本市场关注的区块链行业&#xff0c;一句话概括说如果互联网技术解决的是通讯问题的话&#xff0c;区块链技术解决的是信任问题&#xff0c;其在商业领域应用如何呢&#xff1f;我们来从两个方面去进行剖析。 第一方面&#xff0c;区块链技术可以解决基础…

ORACLE1.21 PLSQL 01

-- 有了SQL 为什么还需要PL/SQL -- SQL功能很强大&#xff0c;但如果是单1sql语句&#xff0c;没有流程控制 -- PL/SQL 是什么&#xff1f; --不仅仅实现流程控制&#xff0c;同时保留SQL本身所有的功能 --还提供变量、常量等支持 --提供更多数据类型的支持 --第一&#xff0c;…

云原生数据库_数据标签竞赛云原生地理空间冲刺

云原生数据库STAC specification is getting closer to the ver 1.0 milestone, and as such the first virtual Cloud Native Geospatial Sprint is being organized next week. An outreach day is planned on Sep 8th with a series of talks and tutorials for everyone. R…

Linux 下的 hosts文件

2019独角兽企业重金招聘Python工程师标准>>> hosts 文件 目录在 /etc/hosts netstat -ntlp //linux 下查看端口 转载于:https://my.oschina.net/u/2494575/blog/1923074

DjangoORM字段介绍

转载于:https://www.cnblogs.com/cansun/p/8647371.html

黑客独角兽_双独角兽

黑客独角兽Preface前言 Last week my friend and colleague Srivastan Srivsan’s note on LinkedIn about Mathematics and Data Science opened an excellent discussion. Well, it is not something new; there were debates in the tech domain such as vim v.s emacs to …

38. 外观数列

38. 外观数列 给定一个正整数 n &#xff0c;输出外观数列的第 n 项。 「外观数列」是一个整数序列&#xff0c;从数字 1 开始&#xff0c;序列中的每一项都是对前一项的描述。 你可以将其视作是由递归公式定义的数字字符串序列&#xff1a; countAndSay(1) “1”countAnd…

Lab1

1.导入 JUnit&#xff0c;Hamcrest Project -> Properites -> Java Build Path -> Add External JARs 2. 安装 Eclemma Help -> Eclipse marketplace 搜索 Eclemma&#xff0c;点击Installed 3. 测试代码 TrianglePractice&#xff1a; public class TrianglePract…

551. Student Attendance Record I 从字符串判断学生考勤

&#xff3b;抄题&#xff3d;&#xff1a; You are given a string representing an attendance record for a student. The record only contains the following three characters: A : Absent. L : Late.P : Present. A student could be rewarded if his attendance record…

使用deploy命令上传jar到私有仓库

打开cmd命令提示符&#xff0c;mvn install是将jar包安装到本地库&#xff0c;mvn deploy是将jar包上传到远程server&#xff0c;install和deploy都会先自行bulid编译检查&#xff0c;如果确认jar包没有问题&#xff0c;可以使用-Dmaven.test.skiptrue参数跳过编译和测试。 全命…

Mac上使用Jenv管理多个JDK版本

使用Java时会接触到不同的版本。大多数时候我在使用Java 8&#xff0c;但是因为某些框架或是工具的要求&#xff0c;这时不得不让Java 7上前线。一般情况下是配置JAVA_HOME&#xff0c;指定不同的Java版本&#xff0c;但是这需要人为手动的输入。如果又要选择其他版本&#xff…

交互式和非交互式_发布交互式剧情

交互式和非交互式Python中的Visual EDA (Visual EDA in Python) I like to learn about different tools and technologies that are available to accomplish a task. When I decided to explore data regarding COVID-19 (Coronavirus), I knew that I would want the abilit…

电子表格转换成数据库_创建数据库,将电子表格转换为关系数据库,第1部分...

电子表格转换成数据库Part 1: Creating an Entity Relational Diagram (ERD)第1部分&#xff1a;创建实体关系图(ERD) A Relational Database Management System (RDMS) is a program that allows us to create, update, and manage a relational database. Structured Query …