成都市网站建设公司/免费广告制作软件

成都市网站建设公司,免费广告制作软件,做电影网站都需要什么工具,网站建设 江苏云原生数据库STAC specification is getting closer to the ver 1.0 milestone, and as such the first virtual Cloud Native Geospatial Sprint is being organized next week. An outreach day is planned on Sep 8th with a series of talks and tutorials for everyone. R…

云原生数据库

STAC specification is getting closer to the ver 1.0 milestone, and as such the first virtual Cloud Native Geospatial Sprint is being organized next week. An outreach day is planned on Sep 8th with a series of talks and tutorials for everyone. Read more about the sprint in this blog post by our Technology Fellow Chris Holmes. A new addition to the sprint is a data labeling contest!

STAC规范越来越接近1.0版本的里程碑,因此,下周将组织第一个虚拟Cloud Native Geospatial Sprint 。 计划在9月8日举办外展日,并为每个人提供一系列讲座和教程。 在我们的技术研究员克里斯·霍姆斯(Chris Holmes)的博客中阅读有关冲刺的更多信息。 sprint的新成员是数据标签竞赛!

If you have followed our blogs, we have written many times on the importance of open-access and high-quality labels on satellite imagery for building geospatial machine learning models. A scalable solution to generate labels for a large number of imagery is to run crowdsourcing campaigns and encourage the community to contribute to open-access training data catalogs.

如果您关注我们的博客 ,我们已经多次撰写了关于卫星图像上开放获取和高质量标签对于构建地理空间机器学习模型的重要性的文章。 为大量图像生成标签的可扩展解决方案是运行众包活动并鼓励社区为开放获取培训数据目录做出贡献。

我们在贴什么标签? (What are we labeling?)

While multispectral satellite imagery provide valuable and timely observations globally, the presence of clouds in the imagery makes them unusable for monitoring land surface. Indeed, some regions around the world are covered by clouds almost daily. So, it’s essential to be able to detect clouds in the imagery and mask them before running any analysis.

尽管多光谱卫星影像可在全球范围内提供有价值且及时的观测结果,但影像中云的存在使它们无法用于监视地面。 实际上,世界上某些地区几乎每天都被乌云遮盖。 因此,在执行任何分析之前,必须能够检测出图像中的云并对其进行遮罩,这一点至关重要。

We have decided to run a data labeling contest for identifying cloud (and background) pixels in Sentinel-2 scenes to enable the development of an accurate cloud detection model from multispectral data. Several scenes from Digital Earth Africa’s (DEA) Sentinel-2 catalog have been selected. DEA’s team has converted all of the Sentinel-2 imagery across Africa to COG and hosted them on AWS (check it out here).

我们已决定举办一次数据标签竞赛,以识别Sentinel-2场景中的云(和背景)像素,从而能够从多光谱数据中开发出准确的云检测模型。 从非洲数字地球(DEA)的Sentinel-2目录中选择了几个场景。 DEA的团队已将整个非洲的所有Sentinel-2图像转换为COG,并将其托管在AWS上( 在此处查看 )。

After the completion of the contest, the resulting training dataset will be hosted on Radiant MLHub with a CC BY 4.0 license for public access.

竞赛结束后,最终的训练数据集将以CC BY 4.0许可证托管在Radiant MLHub上 ,以供公众访问。

我们如何标记图像? (How are we going to label imagery?)

Azavea’s GroundWork platform is being used for the contest. Their team has already ingested a set of Sentinel-2 scenes from DEA’s catalog and created several projects that will be shared with participants. Each scene will be divided into 512 x 512 pixel tasks on GroundWork, and participants can choose to label any of them or automatically get assigned to a task.

Azavea的GroundWork平台正在用于比赛。 他们的团队已经从DEA的目录中提取了一组Sentinel-2场景,并创建了几个项目,这些项目将与参与者共享。 每个场景将在GroundWork上划分为512 x 512像素的任务,参与者可以选择标记其中的任何一个或自动分配给任务。

In each task, you should label cloud and background pixels and ensure that all pixels are assigned to either of the two classes before submitting them. You will receive detailed instructions from GroundWork’s team on how to use the tool and identify cloudy pixels.

在每个任务中,应标记云像素和背景像素,并确保在提交所有像素之前将其分配给两个类中的任何一个。 您将收到GroundWork团队的详细说明,以了解如何使用该工具和识别模糊像素。

计分 (Scoring)

We have defined a score to rank your contribution in the contest based on a combination of the number of tasks you finish and their complexity. For example, tasks that have no cloudy pixels are much easier to label compared to tasks that have many small patches of altocumulus cloud.

我们已经定义了一个分数,可以根据您完成的任务数量及其复杂程度来对您在比赛中的贡献进行排名。 例如,与具有许多小积云的任务相比,没有浑浊像素的任务更容易标记。

Image for post

S: Your score

S:你的分数

N_tasks: Number of tasks completed (completed is defined as all pixels labeled)

N_tasks:已完成的任务数(已完成的定义为所有标有像素的像素)

N_polygons: Number of polygons completed overall (polygons of both cloud and background classes will be counted)

N_polygons:整体完成的多边形数量(将同时计算云类和背景类的多边形)

f_cloud: fraction of cloud-labeled pixels in a completed task

f_cloud:已完成任务中云标记像素的比例

f_background: fraction of background-labeled pixels in a completed task

f_background:完成的任务中带有背景标签的像素的比例

For example, if you finish two tasks, one of them with a single cloudy polygon covering 30% of the task, and another one with two cloudy polygons covering 40% of the task, your score will be:

例如,如果您完成了两个任务,其中一个任务覆盖了任务的30%,一个多云多边形,而另一个任务覆盖了任务的40%,两个多云多边形,您的得分将是:

Image for post

获奖情况 (Awards)

A number of awards will be presented to top contributors of the contest:

竞赛的主要贡献者将获得许多奖项:

  • Top Labeler — $2000 plus an open 50cm SkySat Image, tasked by the winner.

    顶级贴标机-2000美元,外加50厘米的开放式SkySat图像 ,由获胜者负责。

  • 2nd and 3rd place labelers — Jacket or $200

    第二和第三名贴标机—夹克或$ 200
  • Top Labeler from an African Country (who is not in the top 3 prizes) — Jacket or $200

    非洲国家/地区的最佳贴标机(不是前三名)–夹克或$ 200
  • Top Woman Labeler (who is not in the top 3 prizes) — Jacket or $200

    顶级女性贴标机(不在前三名中)-夹克或$ 200
  • Next 5 top labelers — Hoodie or $60

    接下来的5个顶级贴标商-连帽衫或$ 60
  • Anyone with a minimum score of 10 on the leaderboard — t-shirt or $20

    排行榜上最低分数为10的任何人-T恤或$ 20

Read more about all the awards of the Cloud Native Geospatial Sprint here.

在此处阅读有关Cloud Native Geospatial Sprint的所有奖项的更多信息。

如何参加? (How to participate?)

Fill out this form, and you will receive an email from GroundWork on Sep 8th at 10am PDT (5pm UTC) notifying you about the projects that are ready to be labeled. Depending on the completion rate of projects, we will add more projects throughout the contest.

填写表格,您将在9月8日美国太平洋夏令时间上午10点(世界标准时间下午5点)收到GroundWork发出的电子邮件,通知您有关已准备好贴标签的项目。 根据项目的完成率,我们将在比赛中添加更多项目。

You will have until 11:59pm PDT on Sep 15th (6:59am UTC on Sep 16th) to participate and label imagery. After that the leaderboard will be closed and awardees will be selected.

您将在美国夏令时(PDT)9月15日晚上11:59(UTC时间9月16日上午6:59)之前参与并标记图像。 之后,排行榜将被关闭,获奖者将被选中。

松弛通道 (Slack Channel)

We have created a new channel on Radiant MLHub’s slack named, #stac-6-labeling-contest, for participants to share their experience with each other. If you are already on our slack workspace, search for the channel and join. If not you can join the workspace using this link, and then join the channel.

我们在Radiant MLHub的闲暇处创建了一个名为#stac-6-labeling-contest的新频道供参与者彼此分享经验。 如果您已经在我们的闲置工作空间中,请搜索频道并加入。 如果不是,您可以使用此链接加入工作区,然后加入频道。

Finally, this wouldn’t have been possible without the support of our sponsors. Thanks to Planet, Microsoft, Azavea, and Radiant Earth Foundation for sponsoring this event.

最后,没有我们的赞助商的支持,这是不可能的。 感谢Planet,Microsoft,Azavea和Radiant Earth Foundation赞助了此活动。

Looking forward to seeing many of you in the contest!

期待在比赛中与大家见面!

Image for post
Sample image from GroundWork showing cloud and background labels overlaid on Sentinel-2 scene (credit: Azavea)
来自GroundWork的示例图像显示了覆盖在Sentinel-2场景上的云和背景标签(来源:Azavea)

翻译自: https://medium.com/radiant-earth-insights/data-labeling-contest-cloud-native-geospatial-sprint-5d5f0ffdc609

云原生数据库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389984.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 下的 hosts文件

2019独角兽企业重金招聘Python工程师标准>>> hosts 文件 目录在 /etc/hosts netstat -ntlp //linux 下查看端口 转载于:https://my.oschina.net/u/2494575/blog/1923074

DjangoORM字段介绍

转载于:https://www.cnblogs.com/cansun/p/8647371.html

黑客独角兽_双独角兽

黑客独角兽Preface前言 Last week my friend and colleague Srivastan Srivsan’s note on LinkedIn about Mathematics and Data Science opened an excellent discussion. Well, it is not something new; there were debates in the tech domain such as vim v.s emacs to …

38. 外观数列

38. 外观数列 给定一个正整数 n ,输出外观数列的第 n 项。 「外观数列」是一个整数序列,从数字 1 开始,序列中的每一项都是对前一项的描述。 你可以将其视作是由递归公式定义的数字字符串序列: countAndSay(1) “1”countAnd…

Lab1

1.导入 JUnit,Hamcrest Project -> Properites -> Java Build Path -> Add External JARs 2. 安装 Eclemma Help -> Eclipse marketplace 搜索 Eclemma,点击Installed 3. 测试代码 TrianglePractice: public class TrianglePract…

551. Student Attendance Record I 从字符串判断学生考勤

[抄题]: You are given a string representing an attendance record for a student. The record only contains the following three characters: A : Absent. L : Late.P : Present. A student could be rewarded if his attendance record…

使用deploy命令上传jar到私有仓库

打开cmd命令提示符,mvn install是将jar包安装到本地库,mvn deploy是将jar包上传到远程server,install和deploy都会先自行bulid编译检查,如果确认jar包没有问题,可以使用-Dmaven.test.skiptrue参数跳过编译和测试。 全命…

Mac上使用Jenv管理多个JDK版本

使用Java时会接触到不同的版本。大多数时候我在使用Java 8,但是因为某些框架或是工具的要求,这时不得不让Java 7上前线。一般情况下是配置JAVA_HOME,指定不同的Java版本,但是这需要人为手动的输入。如果又要选择其他版本&#xff…

交互式和非交互式_发布交互式剧情

交互式和非交互式Python中的Visual EDA (Visual EDA in Python) I like to learn about different tools and technologies that are available to accomplish a task. When I decided to explore data regarding COVID-19 (Coronavirus), I knew that I would want the abilit…

电子表格转换成数据库_创建数据库,将电子表格转换为关系数据库,第1部分...

电子表格转换成数据库Part 1: Creating an Entity Relational Diagram (ERD)第1部分:创建实体关系图(ERD) A Relational Database Management System (RDMS) is a program that allows us to create, update, and manage a relational database. Structured Query …

【Vue.js学习】生命周期及数据绑定

一、生命后期 官网的图片说明: Vue的生命周期总结 var app new Vue({el:"#app", beforeCreate: function(){console.log(1-beforeCreate 初始化之前);//加载loading},created: function(){console.log(2-created 创建完成);//关闭loading},be…

Springboot(2.0.0.RELEASE)+spark(2.1.0)框架整合到jar包成功发布(原创)!!!

一、前言 首先说明一下,这个框架的整合可能对大神来说十分容易,但是对我来说十分不易,踩了不少坑。虽然整合的时间不长,但是值得来纪念下!!!我个人开发工具比较喜欢IDEA,创建的sprin…

求一个张量的梯度_张量流中离散策略梯度的最小工作示例2 0

求一个张量的梯度Training discrete actor networks with TensorFlow 2.0 is easy once you know how to do it, but also rather different from implementations in TensorFlow 1.0. As the 2.0 version was only released in September 2019, most examples that circulate …

zabbix网络发现主机

1 功能介绍 默认情况下,当我在主机上安装agent,然后要在server上手动添加主机并连接到模板,加入一个主机组。 如果有很多主机,并且经常变动,手动操作就很麻烦。 网络发现就是主机上安装了agent,然后server自…

python股市_如何使用python和破折号创建仪表板来主导股市

python股市始终关注大局 (Keep Your Eyes on the Big Picture) I’ve been fascinated with the stock market since I was a little kid. There is certainly no shortage of data to analyze, and if you find an edge you can make some easy money. To stay on top of the …

阿里巴巴开源 Sentinel,进一步完善 Dubbo 生态

为什么80%的码农都做不了架构师?>>> 阿里巴巴开源 Sentinel,进一步完善 Dubbo 生态 Sentinel 开源地址:https://github.com/alibaba/Sentinel 转载于:https://my.oschina.net/dyyweb/blog/1925839

离群值如何处理_有理处理离群值的局限性

离群值如何处理ARIMA models can be quite adept when it comes to modelling the overall trend of a series along with seasonal patterns.ARIMA模型可以很好地建模一系列总体趋势以及季节性模式。 In a previous article titled SARIMA: Forecasting Seasonal Data with P…

10生活便捷:购物、美食、看病时这样搜,至少能省一半心

本次课程介绍实实在在能够救命、省钱的网站,解决了眼前这些需求后,还有“诗和远方”——不花钱也能点亮自己的生活,获得美的享受! 1、健康医疗这么搜,安全又便捷 现在的医疗市场确实有些混乱,由于医疗的专业…

ppt图表图表类型起始_梅科图表

ppt图表图表类型起始There are different types of variable width bar charts but two are the most popular: 1) Bar Mekko chart; 2) Marimekko chart.可变宽度条形图有不同类型,但最受欢迎的有两种:1)Mekko条形图; 2)Marimekko图表。 Th…

Tomcat日志乱码了怎么处理?

【前言】 tomacat日志有三个地方,分别是Output(控制台)、Tomcat Localhost Log(tomcat本地日志)、Tomcat Catalina Log。 启动日志和大部分报错日志、普通日志都在output打印;有些错误日志,在Tomcat Localhost Log。 三个日志显示区,都可能…