大数据相关从业_如何在组织中以数据从业者的身份闪耀

大数据相关从业

Build bridges, keep the maths under your hat and focus on serving.

架起桥梁,将数学放在脑海中,并专注于服务。

通过协作而不是通过孤立的孤岛来交付出色的数据工作。 (Deliver great data work through collaboration not through comfortable silos.)

“Talent wins games, but teamwork and intelligence win championships.” Michael Jordan

“人才赢得比赛,但团队合作和智慧赢得冠军。” 迈克尔·乔丹

The best data projects and analyses I have worked on have one common denominator: variety.

我从事过的最好的数据项目和分析有一个共同点: 多样性。

A variety of analytics tools, a variety of insight or a variety of people. (Even better if you have the opportunity to mix and match all the above).

各种分析工具,各种见识或各种人员 。 (如果您有机会混合以上所有内容,那就更好了)。

I will leave out number 1 and 2 for another story and focus on number 3 for this story: variety of people.

我将在第一个故事和第二个故事中省去一些,而在这个故事中,我们将重点放在第3个:不同的人。

One of my most enjoyable and impactful data and analytics pieces of work included:

我最有趣,最有影响力的数据和分析工作之一包括:

  • Hypothesis generation to start with.

    假设生成开始于。
  • Actual relevant analysis linked to the hypothesis as main course.

    与假设相关的实际相关分析为主要过程。
  • A clear executable road map for dessert.

    一份清晰的可执行甜品路线图。

All of these required solid analytics work but it could not have been delivered with the same strength had content, design, optimisation, digital and market specialists not chipped in.

所有这些都需要扎实的分析工作,但如果没有内容,设计,优化,数字和市场专家的参与,就不可能以同样的实力交付。

Why is that?

这是为什么?

Because collaboration is how an OK deliverable becomes rich, great and impactful.

因为协作是OK交付物如何变得丰富,强大和有影响力的方式。

When you consider what it takes to deliver a good analysis, it’s hard to imagine how one individual can do it all without running the risk of producing something that is half relevant, bland or even worse, not actionable…

当您考虑提供良好的分析所需的成本时,很难想象一个人可以如何做到这一点而又不会冒产生一半相关,平淡甚至更糟,不可操作的风险的风险……

Think about it. How many analyses have you delivered that were totally relevant, ground breaking even (and actionable)? I bet you can count them on the fingers of your hand(s), ok, I’ll give you the (s). I know I can!

想一想。 您提供了多少分析是完全相关的,具有突破性的(甚至是可行的)? 我敢打赌,您可以将它们放在您的手指上,好的,我会给您的。 我知道我可以!

That’s because great analytics work takes time and more than just one analyst’s input for it to resonate within organisations.

这是因为出色的分析工作需要时间,而且要使组织内部产生共鸣,不仅仅需要一位分析师的投入。

Image for post
Photo by Josh Calabrese on Unsplash
Josh Calabrese在Unsplash上拍摄的照片

The good news is, people are more willing to collaborate than you might think. The bad news is, sometimes, it’s Data departments themselves who don’t see the point in collaboration and think they have all the answers just because they have access to the Data. WRONG.

好消息是,人们比您想象的更愿意合作。 坏消息是,有时是数据部门自己看不到协作的重点,他们以为自己可以访问数据就是所有答案。 错误。

Why is it wrong?

为什么错了?

One of Data & Analytics’s raison d’être is to drive change and change doesn’t happen single-handedly.

Data&Analytics的存在理由之一是推动变革,而变革并非单枪匹马。

旨在服务于组织,而不是您的自我。 (Aim at serving the organisation, not your ego.)

Image for post
Photo by Lefteris kallergis on Unsplash
照片由Lefteris kallergis在Unsplash上拍摄

Remember that unfortunately, just understanding basic and complex maths won’t get you very far, at least in the world of business that is. Personally, I get highly stimulated intellectually when breaking down complex maths formulas to fully understand them. I have always functioned that way. Some maths teachers loved me for it and others hated me for it but I always felt better for it!

请记住,不幸的是,仅仅了解基础数学和复杂数学并不会帮助您,至少在当前的商业环境中。 就个人而言,当分解复杂的数学公式以完全理解它们时,我在智力上受到了极大的刺激。 我一直都这样运作。 一些数学老师为此而爱我,另一些数学老师却为此而恨我,但我总是为此感到更好!

However, I realise that’s weird. Even for someone that works in the analytics world. And worst of all, I know no one cares, well hardly anyone does in organisations…

但是,我意识到这很奇怪。 即使对于在分析界工作的人。 最糟糕的是,我知道没有人在乎,在组织中几乎没人在乎……

So, if you want to shine, what will be truly worth your time is to be able to translate those formulas in another language: the language of business.

因此,如果您想发光,那么真正值得您花费的时间就是能够将这些公式转换为另一种语言:商务语言。

So yes, work hard at maths but know that it can’t be consumed in its raw form by the organisation, it needs transforming a little before it can shine and make you shine as well.

因此,是的,请努力学习数学,但要知道组织不能以原始形式使用它,它需要进行一些转换才能使其发光并让您也发光。

另一个建议:少即是多 (Another word of advice: less is more)

At the end of the day, as a data practitioner, whether analyst, scientist or anything in between, your job is to influence and convince people to act on your findings. So, do yourself a favour and make it easy for your audience to process your findings.

归根结底,作为数据从业者,无论是分析师,科学家还是两者之间的任何事物,您的工作都是影响并说服人们对您的发现采取行动。 因此,请帮自己一个忙,并使听众容易处理您的发现。

An effective way of achieving this is to, once you are done with a piece of analysis or a dashboard, ask yourself: what can I remove as opposed to what can I add? This is actually the difficult bit. We can get so precious with our data and analytics work sometimes that we want to show everything we have looked at. But there is no need. In fact, it is highly recommended not to do this as you are running the risk of diluting your key messages and overwhelming your audience. That’s how you end up with a “Thanks, that was interesting” as opposed to a “Wow, where do I sign?!” type message from your audience at the end.

完成此工作的一种有效方法是,一旦完成了一项分析或一个仪表板,便问自己: 相对于我可以添加哪些内容,我可以删除哪些内容? 这实际上是困难的一点。 有时,我们的数据和分析工作会变得如此珍贵,以至于我们希望展示我们所研究的一切。 但是没有必要。 实际上,强烈建议您不要这样做,因为这样可能会稀释关键信息并压倒观众。 这样,您最终会得到“谢谢,那很有趣”,而不是“哇,我在哪里签名?!” 最后输入听众的信息。

See yourself as a service provider first and you will become an asset.

首先将自己视为服务提供商,您将成为资产。

See yourself as an asset first and you will become a commodity!

首先将自己视为资产,您将成为商品!

最后,继续游戏-永远 (Finally, up your game — Always)

Image for post
Photo by Hunters Race on Unsplash
猎人在Unsplash上的照片

Sounds obvious, right?

听起来很明显,对不对?

However, that’s not easy to make this happen on a practical level when just delivering good data work can sometimes already be a challenge. However, with more and more people becoming data fluent, you don’t have a choice but to constantly try and differentiate. Oh and don’t wait for your employer to send you on the latest data course. By the time this happens, it will be too late anyway. So just take charge.

但是,要使这种情况发生在实际水平上并不容易,因为仅提供良好的数据工作有时已经是一个挑战。 但是,随着越来越多的人使用流利的数据,您别无选择,只能不断地尝试和区分。 哦,不要等您的雇主将最新的数据课程发送给您。 到这种情况发生时,还是太晚了。 因此,只需负责。

The good news is: the world of data is constantly evolving and there are so many different areas one can gradually specialise in: data visualisation, machine learning, marketing analytics, you name it. Just make sure you name it before someone else does!

好消息是:数据世界在不断发展,可以逐步专注于许多不同领域:数据可视化,机器学习,市场分析等。 只要确保先命名就可以了!

In summary, if you want to shine as a data practitioner, you should:

总之,如果您想成为一名数据从业者,您应该:

  • Seek input from various pockets of the organisation.

    寻求组织各方面的投入。
  • Ask yourself how you can serve the organisation better.

    问问自己如何更好地为组织服务。
  • Constantly invest in yourself to sharpen your game.

    不断投资自己,以提高您的游戏水平。

所以继续发光! (So go on and shine!)

翻译自: https://medium.com/the-innovation/how-to-shine-in-organisations-as-a-data-practitioner-32c06bad6a07

大数据相关从业

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django进阶之中间件

中间件简介 在http请求 到达视图函数之前 和视图函数return之后,django会根据自己的规则在合适的时机执行中间件中相应的方法。 中间件的执行流程 1、执行完所有的request方法 到达视图函数。 2、执行中间件的其他方法 2、经过所有response方法 返回客户端。 注意…

汉诺塔递归算法进阶_进阶python 1递归

汉诺塔递归算法进阶When something is specified in terms of itself, it is called recursion. The recursion gives us a new idea of how to solve a kind of problem and this gives us insights into the nature of computation. Basically, many of computational artifa…

windows 停止nginx

1、查找进程 tasklist | findstr nginx2、杀死进程 taskkill /pid 6508 /F3、一次杀死多个进程taskkill /pid 6508 /pid 16048 /f转载于:https://blog.51cto.com/dressame/2161759

SpringBoot返回json和xml

有些情况接口需要返回的是xml数据&#xff0c;在springboot中并不需要每次都转换一下数据格式&#xff0c;只需做一些微调整即可。 新建一个springboot项目&#xff0c;加入依赖jackson-dataformat-xml&#xff0c;pom文件代码如下&#xff1a; <?xml version"1.0&quo…

orange 数据分析_使用Orange GUI的放置结果数据分析

orange 数据分析Objective : Analysing of several factors influencing the recruitment of students and extracting information through plots.目的&#xff1a;分析影响学生招生和通过情节提取信息的几个因素。 Description : The following analysis presents the diffe…

普里姆从不同顶点出发_来自三个不同聚类分析的三个不同教训数据科学的顶点...

普里姆从不同顶点出发绘制大流行时期社区的风险群图&#xff1a;以布宜诺斯艾利斯为例 (Map Risk Clusters of Neighbourhoods in the time of Pandemic: a case of Buenos Aires) 介绍 (Introduction) Every year is unique and particular. But, 2020 brought the world the …

荷兰牛栏 荷兰售价_荷兰的公路货运是如何发展的

荷兰牛栏 荷兰售价I spent hours daily driving on one of the busiest motorways in the Netherlands when commuting was still a norm. When I first came across with the goods vehicle data on CBS website, it immediately attracted my attention: it could answer tho…

Vim 行号的显示与隐藏

2019独角兽企业重金招聘Python工程师标准>>> Vim 行号的显示与隐藏 一、当前文档的显示与隐藏 1 打开一个文档 [rootpcname ~]# vim demo.txt This is the main Apache HTTP server configuration file. It contains the configuration directives that give the s…

结对项目-小学生四则运算系统网页版项目报告

结对作业搭档&#xff1a;童宇欣 本篇博客结构一览&#xff1a; 1&#xff09;.前言(包括仓库地址等项目信息) 2&#xff09;.开始前PSP展示 3&#xff09;.结对编程对接口的设计 4&#xff09;.计算模块接口的设计与实现过程 5&#xff09;.计算模块接口部分的性能改进 6&…

袁中的第三次作业

第一题&#xff1a; 输出月份英文名 设计思路: 1:看题目&#xff1a;主函数与函数声明&#xff0c;知道它要你干什么2&#xff1a;理解与分析&#xff1a;在main中&#xff0c;给你一个月份数字n&#xff0c;要求你通过调用函数char *getmonth&#xff0c;来判断&#xff1a;若…

Python从菜鸟到高手(1):初识Python

1 Python简介 1.1 什么是Python Python是一种面向对象的解释型计算机程序设计语言&#xff0c;由荷兰人吉多范罗苏姆&#xff08;Guido van Rossum&#xff09;于1989年发明&#xff0c;第一个公开发行版发行于1991年。目前Python的最新发行版是Python3.6。 Python是纯粹的自由…

如何成为数据科学家_成为数据科学家需要了解什么

如何成为数据科学家Data science is one of the new, emerging fields that has the power to extract useful trends and insights from both structured and unstructured data. It is an interdisciplinary field that uses scientific research, algorithms, and graphs to…

阿里云对数据可靠性保障的一些思考

背景互联网时代的数据重要性不言而喻&#xff0c;任何数据的丢失都会给企事业单位、政府机关等造成无法计算和无法弥补的损失&#xff0c;尤其随着云计算和大数据时代的到来&#xff0c;数据中心的规模日益增大&#xff0c;环境更加复杂&#xff0c;云上客户群体越来越庞大&…

linux实验二

南京信息工程大学实验报告 实验名称 linux 常用命令练习 实验日期 2018-4-4 得分指导教师 系 计软院 专业 软嵌 年级 2015 级 班次 &#xff08;1&#xff09; 姓名王江远 学号20151398006 一、实验目的 1. 掌握 linux 系统中 shell 的基础知识 2. 掌握 linux 系统中文件系统的…

个人项目api接口_5个免费有趣的API,可用于学习个人项目等

个人项目api接口Public APIs are awesome!公共API很棒&#xff01; There are over 50 pieces covering APIs on just the Towards Data Science publication, so I won’t go into too lengthy of an introduction. APIs basically let you interact with some tool or servi…

咕泡-模板方法 template method 设计模式笔记

2019独角兽企业重金招聘Python工程师标准>>> 模板方法模式&#xff08;Template Method&#xff09; 定义一个操作中的算法的骨架&#xff0c;而将一些步骤延迟到子类中Template Method 使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤Template Me…

如何评价强gis与弱gis_什么是gis的简化解释

如何评价强gis与弱gisTL;DR — A Geographic Information System is an information system that specializes in the storage, retrieval and display of location data.TL; DR — 地理信息系统 是专门从事位置数据的存储&#xff0c;检索和显示的信息系统。 The standard de…

Scrum冲刺-Ⅳ

第四次冲刺任务 团队分工 成员&#xff1a;刘鹏芝&#xff0c;罗樟&#xff0c;王小莉&#xff0c;沈兴艳&#xff0c;徐棒&#xff0c;彭康明&#xff0c;胡广键 产品用户&#xff1a;王小莉 需求规约&#xff1a;彭康明&#xff0c;罗樟 UML&#xff1a;刘鹏芝&#xff0c;沈…

机器人影视对接_机器学习对接会

机器人影视对接A simple question like ‘How do you find a compatible partner?’ is what pushed me to try to do this project in order to find a compatible partner for any person in a population, and the motive behind this blog post is to explain my approach…

mysql 数据库优化之执行计划(explain)简析

数据库优化是一个比较宽泛的概念&#xff0c;涵盖范围较广。大的层面涉及分布式主从、分库、分表等&#xff1b;小的层面包括连接池使用、复杂查询与简单查询的选择及是否在应用中做数据整合等&#xff1b;具体到sql语句执行效率则需调整相应查询字段&#xff0c;条件字段&…