Pytorch中CNN入门思想及实现

CNN卷积神经网络

基础概念:

以卷积操作为基础的网络结构,每个卷积核可以看成一个特征提取器。
在这里插入图片描述

思想:

每次观察数据的一部分,如图,在整个矩阵中只观察黄色部分3×3的矩阵,将这【3×3】矩阵·(点乘)权重得到特征矩阵的第一项,然后进行平移进行第二项的计算。依此类推,得到最后的特征矩阵。
在这里插入图片描述
在这里插入图片描述

利用Pytorch框架实现CNN

import torch
import torch.nn as nn
import numpy as np"""
使用pytorch实现CNN
不考虑偏差值
"""class TorchCNN(nn.Module):def __init__(self, in_channel, out_channel, kernel):super(TorchCNN, self).__init__()self.layer = nn.Conv2d(in_channel, out_channel, kernel, bias=False)def forward(self, x):return self.layer(x)x = np.array([[0.1, 0.2, 0.3, 0.4],[-3, -4, -5, -6],[5.1, 6.2, 7.3, 8.4],[-0.7, -0.8, -0.9, -1]])  #网络输入#torch实验
in_channel = 1      #单通道(NLP中一般用单通道)
out_channel = 3     #多少个卷积核(每一个卷积核代表一个独立的权重)
kernel_size = 2     #2*2的方块(功能就是图中黄色[3×3]矩阵)
torch_model = TorchCNN(in_channel, out_channel, kernel_size)
# print(torch_model.state_dict())
torch_w = torch_model.state_dict()["layer.weight"]
# print(torch_w.numpy().shape)
torch_x = torch.FloatTensor([[x]])
#权重是4维,输入应该也为四维,通过多一个[],将输入由三维变成四维
output = torch_model.forward(torch_x)
output = output.detach().numpy()
print(output, output.shape, "torch模型预测结果\n")

自定义模型代码实现CNN:

采用自定义模型实现CNN,不考虑偏差值,因为要与Pytorch框架结果相对比,需要调取在Pytorch模型中的输入和随机权重。因此如果要运行,须将此代码放在Pytorch框架下运行。

"""
手动实现简单的神经网络
与Pytorch对比实验
"""
#自定义CNN模型
class DiyModel:def __init__(self, input_height, input_width, weights, kernel_size):self.height = input_heightself.width = input_widthself.weights = weightsself.kernel_size = kernel_sizedef forward(self, x):output = []for kernel_weight in self.weights:kernel_weight = kernel_weight.squeeze().numpy()#weight取出来时是[1×2×2],通过squeeze变成[2×2],然后变成numpy取出kernel_output = np.zeros((self.height - kernel_size + 1, self.width - kernel_size + 1)) #全0输出矩阵for i in range(self.height - kernel_size + 1):for j in range(self.width - kernel_size + 1):window = x[i:i+kernel_size, j:j+kernel_size]   #x是原始输入 剩下的是矩阵索引方法kernel_output[i, j] = np.sum(kernel_weight * window)  #np.dot != x*y   x*y是点乘(对应位置相乘)output.append(kernel_output)return np.array(output)diy_model = DiyModel(x.shape[0], x.shape[1], torch_w, kernel_size)
output = diy_model.forward(x)
print(output, "diy模型预测结果")

最终对比结果:

在这里插入图片描述
可以清楚看到Pytorch框架下的结果与自定义框架下的结果相同。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389582.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

事件映射 消息映射_映射幻影收费站

事件映射 消息映射When I was a child, I had a voracious appetite for books. I was constantly visiting the library and picking new volumes to read, but one I always came back to was The Phantom Tollbooth, written by Norton Juster and illustrated by Jules Fei…

前端代码调试常用

转载于:https://www.cnblogs.com/tabCtrlShift/p/9076752.html

Pytorch中BN层入门思想及实现

批归一化层-BN层(Batch Normalization) 作用及影响: 直接作用:对输入BN层的张量进行数值归一化,使其成为均值为零,方差为一的张量。 带来影响: 1.使得网络更加稳定,结果不容易受到…

匿名内部类和匿名类_匿名schanonymous

匿名内部类和匿名类Everybody loves a fad. You can pinpoint someone’s generation better than carbon dating by asking them what their favorite toys and gadgets were as a kid. Tamagotchi and pogs? You were born around 1988, weren’t you? Coleco Electronic Q…

Pytorch框架中SGD&Adam优化器以及BP反向传播入门思想及实现

因为这章内容比较多,分开来叙述,前面先讲理论后面是讲代码。最重要的是代码部分,结合代码去理解思想。 SGD优化器 思想: 根据梯度,控制调整权重的幅度 公式: 权重(新) 权重(旧) - 学习率 梯度 Adam…

朱晔和你聊Spring系列S1E3:Spring咖啡罐里的豆子

标题中的咖啡罐指的是Spring容器,容器里装的当然就是被称作Bean的豆子。本文我们会以一个最基本的例子来熟悉Spring的容器管理和扩展点。阅读PDF版本 为什么要让容器来管理对象? 首先我们来聊聊这个问题,为什么我们要用Spring来管理对象&…

ab实验置信度_为什么您的Ab测试需要置信区间

ab实验置信度by Alos Bissuel, Vincent Grosbois and Benjamin HeymannAlosBissuel,Vincent Grosbois和Benjamin Heymann撰写 The recent media debate on COVID-19 drugs is a unique occasion to discuss why decision making in an uncertain environment is a …

基于Pytorch的NLP入门任务思想及代码实现:判断文本中是否出现指定字

今天学了第一个基于Pytorch框架的NLP任务: 判断文本中是否出现指定字 思路:(注意:这是基于字的算法) 任务:判断文本中是否出现“xyz”,出现其中之一即可 训练部分: 一&#xff…

支撑阻力指标_使用k表示聚类以创建支撑和阻力

支撑阻力指标Note from Towards Data Science’s editors: While we allow independent authors to publish articles in accordance with our rules and guidelines, we do not endorse each author’s contribution. You should not rely on an author’s works without seek…

高版本(3.9版本)python在anaconda安装opencv库及skimage库(scikit_image库)诸多问题解决办法

今天开始CV方向的学习,然而刚拿到基础代码的时候发现 from skimage.color import rgb2gray 和 import cv2标红(这里是因为我已经配置成功了,所以没有红标),我以为是单纯两个库没有下载,去pycharm中下载ski…

单机安装ZooKeeper

2019独角兽企业重金招聘Python工程师标准>>> zookeeper下载、安装以及配置环境变量 本节介绍单机的zookeeper安装,官方下载地址如下: https://archive.apache.org/dist/zookeeper/ 我这里使用的是3.4.11版本,所以找到相应的版本点…

均线交易策略的回测 r_使用r创建交易策略并进行回测

均线交易策略的回测 rR Programming language is an open-source software developed by statisticians and it is widely used among Data Miners for developing Data Analysis. R can be best programmed and developed in RStudio which is an IDE (Integrated Development…

opencv入门课程:彩色图像灰度化和二值化(采用skimage库和opencv库两种方法)

用最简单的办法实现彩色图像灰度化和二值化: 首先采用skimage库(skimage库现在在scikit_image库中)实现: from skimage.color import rgb2gray import numpy as np import matplotlib.pyplot as plt""" skimage库…

instagram分析以预测与安的限量版运动鞋转售价格

Being a sneakerhead is a culture on its own and has its own industry. Every month Biggest brands introduce few select Limited Edition Sneakers which are sold in the markets according to Lottery System called ‘Raffle’. Which have created a new market of i…

opencv:用最邻近插值和双线性插值法实现上采样(放大图像)与下采样(缩小图像)

上采样与下采样 概念: 上采样: 放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的 是放大原图像,从而可以显示在更高分辨率的显示设备上。 下采样&#xff…

CSS魔法堂:那个被我们忽略的outline

前言 在CSS魔法堂:改变单选框颜色就这么吹毛求疵!中我们要模拟原生单选框通过Tab键获得焦点的效果,这里涉及到一个常常被忽略的属性——outline,由于之前对其印象确实有些模糊,于是本文打算对其进行稍微深入的研究^_^ …

初创公司怎么做销售数据分析_初创公司与Faang公司的数据科学

初创公司怎么做销售数据分析介绍 (Introduction) In an increasingly technological world, data scientist and analyst roles have emerged, with responsibilities ranging from optimizing Yelp ratings to filtering Amazon recommendations and designing Facebook featu…

opencv:灰色和彩色图像的像素直方图及直方图均值化的实现与展示

直方图及直方图均值化的理论,实现及展示 直方图: 首先,我们来看看什么是直方图: 理论概念: 在图像处理中,经常用到直方图,如颜色直方图、灰度直方图等。 图像的灰度直方图就描述了图像中灰度分…

交换机的基本原理配置(一)

1、配置主机名 在全局模式下输入hostname 名字 然后回车即可立马生效(在生产环境交换机必须有自己唯一的名字) Switch(config)#hostname jsh-sw1jsh-sw1(config)#2、显示系统OS名称及版本信息 特权模式下,输入命令 show version Switch#show …

opencv:卷积涉及的基础概念,Sobel边缘检测代码实现及Same(相同)填充与Vaild(有效)填充

滤波 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。 卷积 卷积的概念: 卷积的原理与滤波类似。但是卷积却有着细小的差别。 卷积操作也是卷积核与图像对应位置的乘积和。但是卷积操作在做乘…