乐高ev3 读取外部数据_数据就是新乐高

乐高ev3 读取外部数据

When I was a kid, I used to love playing with Lego. My brother and I built almost all kinds of stuff with Lego — animals, cars, houses, and even spaceships. As time went on, our creations became more ambitious and realistic. There were also times when we could each have insisted that our Lego was our own, till we realized that pooling resources would eventually help us went further. We were growing up too, and as our playing became more sophisticated, we learned how to make better models.

小时候,我曾经喜欢和乐高玩。 我的兄弟和我用乐高积木建造了几乎所有东西-动物,汽车,房屋,甚至宇宙飞船。 随着时间的流逝,我们的创作变得更加雄心勃勃和更加现实。 有时我们每个人都可以坚持认为乐高是我们自己的,直到我们意识到汇集资源最终将帮助我们走得更远。 我们也在成长,随着我们的演奏变得越来越复杂,我们学会了如何制作更好的模型。

As an aspiring data scientist, I realized that working with data is surprisingly a lot like my childhood Lego memories. In this article, I want to share some of the memories I’ve had that show how playing with Lego and working with data are closer than you think.

作为一个有抱负的数据科学家,我意识到处理数据非常像我童年时期的乐高记忆。 在本文中,我想分享一些我曾经经历过的记忆,这些记忆表明与Lego玩游戏和处理数据的关系比您想象的要近。

探索是该过程中最有趣的部分。 (Exploration is the most fun part of the process.)

Image for post
Photo by Rick Mason on Unsplash
Rick Mason在Unsplash上拍摄的照片

When I was a kid, I liked to put all my Lego bricks together in a giant tub because a lot of fun in building something was searching through a sea of bricks and trying out new patterns that I didn’t think about before.

当我还是个孩子的时候,我喜欢将所有乐高积木放在一个巨大的浴缸中,因为建造东西的乐趣来自于在积木中寻找并尝试了以前从未想到的新模式。

Anyone who deals with data knows that as much as 80% of the process is cleaning up the data and doing exploratory analysis. Personally, that’s what I love about working with data — that’s where I let my creativity and imagination run wild. Jumping straight into the dataset and exploring various visualizations and correlations, in search of patterns, brings me back to a childhood spent digging through a pile of Lego.

任何处理数据的人都知道,多达80%的过程正在清理数据并进行探索性分析。 就个人而言,这就是我喜欢使用数据的原因,这是我让自己的创造力和想象力疯狂的地方。 直接进入数据集并探索各种可视化效果和相关性,以寻找模式,这使我回到了童年时花大量时间在挖掘一堆乐高玩具上的经历。

要构建有用的东西,您需要大量资源。 (To build something useful you need lots of resources.)

Image for post
Photo by Ryan Quintal on Unsplash
Ryan Quintal在Unsplash上拍摄的照片

If you don’t have enough Lego bricks, chances are the things you’re building aren’t realistic. The model is crude, the colors don’t match, and there are gaps. The same goes for machine learning models. If you don’t have enough data, your models are poor, and you will encounter lots of errors.

如果您没有足够的乐高积木,那么您正在建造的东西可能就不现实了。 模型很粗糙,颜色不匹配,并且有空隙。 机器学习模型也是如此。 如果没有足够的数据,则模型会很差,并且会遇到很多错误。

However, sometimes, I might not have the right pieces to build a model exactly the way I wanted it, so I had to search for alternatives or reconsider how to build my Lego model. Hence, I learned a new way of using what I had. Similarly, as long as you are creative about where you look, there are always insights to be gained from even the most limited data.

但是,有时候,我可能没有合适的工具来按照我想要的方式完全构建模型,因此我不得不寻找替代方案或重新考虑如何构建Lego模型。 因此,我学到了一种使用现有物品的新方法。 同样,只要您对自己的外观具有创造力,即使是最有限的数据也总会获得洞察力。

高质量的模型需要多种资源。 (A good quality model needs a diversity of resources.)

Image for post
Photo by Glen Carrie on Unsplash
Glen Carrie在Unsplash上拍摄的照片

To build a good quality Lego model, you also need a diversity of bricks. Models built with only the basic 2x4 bricks are rough and inaccurate. This is where it was so useful to get Lego from friends and family. As our family and friends gave us more Lego bricks, we got more diverse bricks that helped us create more accurate models.

要构建高质量的Lego模型,您还需要各种各样的积木。 仅使用基本2x4砖块构建的模型是粗糙且不准确的。 在这里,从朋友和家人那里获得乐高玩具非常有用。 随着我们的家人和朋友给我们提供了更多的乐高积木,我们获得了更多种类的积木,这有助于我们创建更准确的模型。

This may also be a harsh childhood truth, that the children with the most Lego, the best pieces, and the most time to play create the best models. The same harsh truth applies to any machine learning projects. Projects with the biggest data volumes, the most diverse data, and the best teams to use the data would create the most accurate models.

这也可能是一个残酷的童年真理,那就是乐高,最好的作品和最长时间玩耍的孩子会创造出最好的模特。 同样的苛刻真理适用于任何机器学习项目。 数据量最大,数据种类最多,使用数据的团队最好的项目将创建最准确的模型。

两者都需要反复思考。 (Both require iterative thinking.)

Image for post
Photo by Kelly Sikkema on Unsplash
Kelly Sikkema在Unsplash上的照片

The beauty of Lego is that you’re not limited to what’s on the box. Rebuilding something and refining it each time requires iterative thinking. When it comes to working with data, there are also plenty of opportunities to iterate.

乐高的魅力在于,您不仅限于盒子上的东西。 每次重建和完善它们都需要反复思考。 在处理数据时,还存在很多迭代的机会。

When I get a “decent enough” solution, whether it’s a dashboard or a Python script, I still find time to break it, repair it, and keep improving. It may seem to get the job done at first, but I’m likely to be able to redesign it into something more effective and scalable.

当我得到一个“足够体面”的解决方案时,无论是仪表板还是Python脚本,我仍然有时间打破它,对其进行修复并不断改进。 它似乎一开始就可以完成工作,但我很可能能够将其重新设计为更有效和可扩展的功能。

随着您构建更多产品,您会变得更好。 (You get better as you build more.)

Image for post
Photo by Caleb Woods on Unsplash
Caleb Woods在Unsplash上拍摄的照片

Young children make rough Lego models, the colors don’t match and the shapes are wrong. On the other hand, older children build models with careful color and shape planning.

年幼的孩子会制作粗糙的Lego模型,颜色不匹配,形状错误。 另一方面,年龄较大的孩子在构建模型时要仔细计划颜色和形状。

The same also happens with data and algorithms. As you get to know your data and algorithms, you get to understand their limitations and strive to build something better. And as the amount of data is growing, you may need to fix and adjust your models to get better and better. In other words, the same learning curve applies to Lego building and machine learning modeling.

数据和算法也是如此。 当您了解数据和算法时,您将了解它们的局限性并努力构建更好的东西。 并且,随着数据量的增长,您可能需要修复和调整模型以变得越来越好。 换句话说,相同的学习曲线适用于乐高积木和机器学习建模。

设计很重要。 (Design is important.)

Image for post
Photo by Kristine Tumanyan on Unsplash
Kristine Tumanyan在Unsplash上拍摄的照片

The name Lego is derived from the Danish phrase ‘leg godt’, which means “play well.” Before I start building something with Lego, I will first decide if it’s something I want to display, or something I want to play with. For display-only models, I could get away with a simpler architecture, but if it was something I wanted to play with, I knew I had to make it extra robust. After all, it would be very disappointing if the wings of my spaceship fell off while I was swooshing it around the room.

乐高这个名字源自丹麦语“ leg godt” ,意思是“打得好”。 在开始使用Lego构建东西之前,我将首先决定是要显示还是要玩的东西。 对于仅用于显示的模型,我可以采用更简单的体系结构,但是如果要使用它,我知道必须使其更加坚固。 毕竟,当我在房间周围晃动时,如果我的飞船的机翼掉下来,那将是非常令人失望的。

When it comes to making a dashboard, Python script, or even a report, I often start by asking myself if this is something people will actually use (i.e. play with), or if it’s something they want to see once and never again. From there, I plan and build accordingly.

在制作仪表板,Python脚本甚至报告时,我通常会先问自己这是否是人们真正会使用(即玩弄)的东西,还是他们想一次又一次地看到的东西。 从那里,我计划并进行相应的构建。

Image for post
Photo by Ola Syrocka on Unsplash
Ola Syrocka在Unsplash上拍摄的照片

Lego has taught me a lot about data and building models. Just like Lego:

乐高教给我很多有关数据和构建模型的知识。 就像乐高:

“To build something useful you need lots of resources, diversity, and the knowledge to build the right models in the right way.”

“要构建有用的东西,您需要大量资源,多样性和知识,以正确的方式构建正确的模型。”

谢谢阅读 (Thanks for Reading)

  • Follow me on Medium for more

    在更多内容中关注我

  • Let’s connect on LinkedIn

    让我们在LinkedIn上建立联系

If you enjoyed this, you might also like:

如果喜欢这个,您可能还会喜欢:

翻译自: https://towardsdatascience.com/data-is-the-new-lego-bc634cc8a795

乐高ev3 读取外部数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389399.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图像灰度化与二值化

图像灰度化 什么是图像灰度化? 图像灰度化并不是将单纯的图像变成灰色,而是将图片的BGR各通道以某种规律综合起来,使图片显示位灰色。 规律如下: 手动实现灰度化 首先我们采用手动灰度化的方式: 其思想就是&#…

分析citibike数据eda

数据科学 (Data Science) CitiBike is New York City’s famous bike rental company and the largest in the USA. CitiBike launched in May 2013 and has become an essential part of the transportation network. They make commute fun, efficient, and affordable — no…

上采样(放大图像)和下采样(缩小图像)(最邻近插值和双线性插值的理解和实现)

上采样和下采样 什么是上采样和下采样? • 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有 两个:1、使得图像符合显示区域的大小;2、生成对应图…

r语言绘制雷达图_用r绘制雷达蜘蛛图

r语言绘制雷达图I’ve tried several different types of NBA analytical articles within my readership who are a group of true fans of basketball. I found that the most popular articles are not those with state-of-the-art machine learning technologies, but tho…

java 分裂数字_分裂的补充:超越数字,打印物理可视化

java 分裂数字As noted in my earlier Nightingale writings, color harmony is the process of choosing colors on a Color Wheel that work well together in the composition of an image. Today, I will step further into color theory by discussing the Split Compleme…

结构化数据建模——titanic数据集的模型建立和训练(Pytorch版)

本文参考《20天吃透Pytorch》来实现titanic数据集的模型建立和训练 在书中理论的同时加入自己的理解。 一,准备数据 数据加载 titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。 结构化数据一般会使用Pandas中的DataFrame进行预处理…

比赛,幸福度_幸福与生活满意度

比赛,幸福度What is the purpose of life? Is that to be happy? Why people go through all the pain and hardship? Is it to achieve happiness in some way?人生的目的是什么? 那是幸福吗? 人们为什么要经历所有的痛苦和磨难? 是通过…

带有postgres和jupyter笔记本的Titanic数据集

PostgreSQL is a powerful, open source object-relational database system with over 30 years of active development that has earned it a strong reputation for reliability, feature robustness, and performance.PostgreSQL是一个功能强大的开源对象关系数据库系统&am…

Django学习--数据库同步操作技巧

同步数据库:使用上述两条命令同步数据库1.认识migrations目录:migrations目录作用:用来存放通过makemigrations命令生成的数据库脚本,里面的生成的脚本不要轻易修改。要正常的使用数据库同步的功能,app目录下必须要有m…

React 新 Context API 在前端状态管理的实践

2019独角兽企业重金招聘Python工程师标准>>> 本文转载至:今日头条技术博客 众所周知,React的单向数据流模式导致状态只能一级一级的由父组件传递到子组件,在大中型应用中较为繁琐不好管理,通常我们需要使用Redux来帮助…

机器学习模型 非线性模型_机器学习模型说明

机器学习模型 非线性模型A Case Study of Shap and pdp using Diabetes dataset使用糖尿病数据集对Shap和pdp进行案例研究 Explaining Machine Learning Models has always been a difficult concept to comprehend in which model results and performance stay black box (h…

5分钟内完成胸部CT扫描机器学习

This post provides an overview of chest CT scan machine learning organized by clinical goal, data representation, task, and model.这篇文章按临床目标,数据表示,任务和模型组织了胸部CT扫描机器学习的概述。 A chest CT scan is a grayscale 3…

Pytorch高阶API示范——线性回归模型

本文与《20天吃透Pytorch》有所不同,《20天吃透Pytorch》中是继承之前的模型进行拟合,本文是单独建立网络进行拟合。 代码实现: import torch import numpy as np import matplotlib.pyplot as plt import pandas as pd from torch import …

作业要求 20181023-3 每周例行报告

本周要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2282 1、本周PSP 总计:927min 2、本周进度条 代码行数 博文字数 用到的软件工程知识点 217 757 PSP、版本控制 3、累积进度图 (1)累积代码折线图 &…

算命数据_未来的数据科学家或算命精神向导

算命数据Real Estate Sale Prices, Regression, and Classification: Data Science is the Future of Fortune Telling房地产销售价格,回归和分类:数据科学是算命的未来 As we all know, I am unusually blessed with totally-real psychic abilities.众…

openai-gpt_为什么到处都看到GPT-3?

openai-gptDisclaimer: My opinions are informed by my experience maintaining Cortex, an open source platform for machine learning engineering.免责声明:我的看法是基于我维护 机器学习工程的开源平台 Cortex的 经验而 得出 的。 If you frequent any part…

Pytorch高阶API示范——DNN二分类模型

代码部分: import numpy as np import pandas as pd from matplotlib import pyplot as plt import torch from torch import nn import torch.nn.functional as F from torch.utils.data import Dataset,DataLoader,TensorDataset""" 准备数据 &qu…

OO期末总结

$0 写在前面 善始善终,临近期末,为一学期的收获和努力画一个圆满的句号。 $1 测试与正确性论证的比较 $1-0 什么是测试? 测试是使用人工操作或者程序自动运行的方式来检验它是否满足规定的需求或弄清预期结果与实际结果之间的差别的过程。 它…

数据可视化及其重要性:Python

Data visualization is an important skill to possess for anyone trying to extract and communicate insights from data. In the field of machine learning, visualization plays a key role throughout the entire process of analysis.对于任何试图从数据中提取和传达见…

【洛谷算法题】P1046-[NOIP2005 普及组] 陶陶摘苹果【入门2分支结构】Java题解

👨‍💻博客主页:花无缺 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P1046-[NOIP2005 普及组] 陶陶摘苹果【入门2分支结构】Java题解🌏题目…