用python进行营销分析_用python进行covid 19分析

用python进行营销分析

Python is a highly powerful general purpose programming language which can be easily learned and provides data scientists a wide variety of tools and packages. Amid this pandemic period, I decided to do an analysis on this novel coronavirus.

Python是一种功能强大的通用编程语言,可以轻松学习,并为数据科学家提供各种工具和软件包。 在这个大流行时期,我决定对这种新型冠状病毒进行分析。

In this article, I am going to walk you through the steps I undertook for this analysis with visuals and code snippets.

在本文中,我将通过视觉和代码片段逐步指导您进行此分析。

数据分析涉及的步骤: (Steps involved in Data Analysis:)

  1. Importing required packages

    导入所需的软件包

2. Gathering Data

2.收集数据

3. Transforming Data to our needs (Data Wrangling)

3.将数据转变为我们的需求(数据整理)

4. Exploratory Data Analysis (EDA) and Visualization

4.探索性数据分析(EDA)和可视化

步骤— 1:导入所需的软件包 (Step — 1: Importing required Packages)

Importing our required packages is the starting point of all data analysis programming in python. As I’ve said, python provides a wide variety of packages for data scientists and in this analysis I used python’s most popular data science packages Pandas and NumPy for Data Wrangling and EDA. When coming to Data Visualization, I used python’s interactive packages Plotly and Matplotlib. It’s very simple to import packages in python code:

导入所需的软件包是python中所有数据分析编程的起点。 就像我说过的那样,python为数据科学家提供了各种各样的软件包,在此分析中,我使用了python最受欢迎的数据科学软件包Pandas和NumPy进行数据整理和EDA。 进行数据可视化时,我使用了python的交互式软件包Plotly和Matplotlib。 用python代码导入软件包非常简单:

This is the code for importing our primary packages to perform data analysis but still, we need to add some more packages to our code which we will see in step-2. Yay! We successfully finished our first step.

这是用于导入主要程序包以执行数据分析的代码,但是仍然需要向代码中添加更多程序包,我们将在步骤2中看到这些代码。 好极了! 我们成功地完成了第一步。

步骤2:收集数据 (Step — 2: Gathering Data)

For a clean and perfect data analysis, the foremost important element is collecting quality Data. For this analysis, I’ve collected many data from various sources for better accuracy.

对于 干净,完美的数据分析,最重要的元素是收集高质量的数据。 为了进行此分析,我从各种来源收集了许多数据,以提高准确性。

Our primary dataset is extracted from esri (a website which provides updated data on coronavirus) using a query url (click here to view the website). Follow the code snippets to extract the data from esri:

我们的主要数据集是使用查询网址从esri(提供有关冠状病毒的最新数据的网站)中提取的( 请单击此处查看该网站 )。 按照代码片段从esri中提取数据:

Requests is a python packages used to extract data from a given json file. In this code I used requests to extract data from the given query url by esri. We are now ready to do some Data Wrangling! (Note : We will be importing many data in step-4 of our analysis)

Requests是一个python软件包,用于从给定的json文件中提取数据。 在这段代码中,我使用了esri的请求从给定的查询URL中提取数据。 现在,我们准备进行一些数据整理! (注意:我们将在分析的第4步中导入许多数据)

步骤— 3:数据整理 (Step — 3: Data Wrangling)

Data Wrangling is a process where we will transform and clean our data to our needs. We can’t do analysis with our raw extracted data. So, we have to transform the data to proceed our analysis. Here’s the code for our Data Wrangling:

数据整理是一个过程,在此过程中,我们将根据需要转换和清理数据。 我们无法使用原始提取的数据进行分析。 因此,我们必须转换数据以进行分析。 这是我们的数据整理的代码:

Note that, we have imported a new python package, ‘datetime’, which helps us to work with dates and times in a dataset. Now, get ready to see the big picture of our analysis -’ EDA and Data Visualization’.

请注意,我们已经导入了一个新的python包“ datetime”,它可以帮助我们处理数据集中的日期和时间。 现在,准备看一下我们分析的大图-“ EDA和数据可视化”。

步骤— 4:探索性数据分析和数据可视化 (Step — 4: Exploratory Data Analysis and Data Visualization)

This process is quite long as it is the heart and soul of data analysis. So, I’ve divided this process into three steps:

这个过程很长,因为它是数据分析的心脏和灵魂。 因此,我将这一过程分为三个步骤:

a. Ranking countries and provinces (based on COVID-19 aspects)

一个。 对国家和省进行排名(基于COVID-19方面)

b. Time Series on COVID-19 Cases

b。 COVID-19病例的时间序列

c. Classification and Distribution of cases

C。 案件分类和分布

Ranking countries and provinces

排名国家和省

From our previously extracted data we are going to rank countries and provinces based on confirmed, deaths, recovered and active cases by doing some EDA and Visualization. Follow the code snippets for the upcoming visuals (Note : Every visualizations are interactive and you can hover them to see their data points)

从我们先前提取的数据中,我们将通过进行一些EDA和可视化,根据确诊,死亡,康复和活着的病例对国家和省进行排名。 请遵循即将出现的视觉效果的代码片段(注意:每个视觉效果都是交互式的,您可以将它们悬停以查看其数据点)

Part 1 — Ranking Most affected countries

第1部分-排名受影响最大的国家

i) Top 10 Confirmed Cases Countries:

i)十大确诊病例国家:

The following code will produce a plot ranking top 10 countries based on confirmed cases.

以下代码将根据已确认的案例得出前十个国家/地区的地块。

# a. Top 10 confirmed countries (Bubble plot)top10_confirmed = pd.DataFrame(data.groupby('Country')['Confirmed'].sum().nlargest(10).sort_values(ascending = False))
fig1 = px.scatter(top10_confirmed, x = top10_confirmed.index, y = 'Confirmed', size = 'Confirmed', size_max = 120,color = top10_confirmed.index, title = 'Top 10 Confirmed Cases Countries')
fig1.show()

演示地址

Graph by Author
作者图

ii) Top 10 Death Cases Countries:

ii)十大死亡案例国家:

The following code will produce a plot ranking top 10 countries based on death cases.

以下代码将根据死亡案例产生一个排在前十个国家/地区的地块。

# b. Top 10 deaths countries (h-Bar plot)top10_deaths = pd.DataFrame(data.groupby('Country')['Deaths'].sum().nlargest(10).sort_values(ascending = True))
fig2 = px.bar(top10_deaths, x = 'Deaths', y = top10_deaths.index, height = 600, color = 'Deaths', orientation = 'h',color_continuous_scale = ['deepskyblue','red'], title = 'Top 10 Death Cases Countries')
fig2.show()

演示地址

Graph by Author
作者图

iii) Top 10 Recovered Cases Countries:

iii)十大被追回病例国家:

The following code will produce a plot ranking top 10 countries based on recovered cases.

以下代码将根据恢复的案例生成一个排在前10个国家/地区的地块。

# c. Top 10 recovered countries (Bar plot)top10_recovered = pd.DataFrame(data.groupby('Country')['Recovered'].sum().nlargest(10).sort_values(ascending = False))
fig3 = px.bar(top10_recovered, x = top10_recovered.index, y = 'Recovered', height = 600, color = 'Recovered',title = 'Top 10 Recovered Cases Countries', color_continuous_scale = px.colors.sequential.Viridis)
fig3.show()

演示地址

Graph by Author
作者图

iv) Top 10 Active Cases Countries:

iv)十大活跃案例国家:

The following code will produce a plot ranking top 10 countries based on recovered cases.

以下代码将根据恢复的案例生成一个排在前10个国家/地区的地块。

# d. Top 10 active countriestop10_active = pd.DataFrame(data.groupby('Country')['Active'].sum().nlargest(10).sort_values(ascending = True))
fig4 = px.bar(top10_active, x = 'Active', y = top10_active.index, height = 600, color = 'Active', orientation = 'h',color_continuous_scale = ['paleturquoise','blue'], title = 'Top 10 Active Cases Countries')
fig4.show()

演示地址

Graph by Author
作者图

Part 2 — Ranking most affected States in largely affected Countries:

第2部分-在受影响最大的国家中对受影响最大的国家进行排名:

EDA for ranking states in largely affected Countries:

对受灾严重国家排名的EDA:

# USA
topstates_us = data['Country'] == 'US'
topstates_us = data[topstates_us].nlargest(5, 'Confirmed')
# Brazil
topstates_brazil = data['Country'] == 'Brazil'
topstates_brazil = data[topstates_brazil].nlargest(5, 'Confirmed')
# India
topstates_india = data['Country'] == 'India'
topstates_india = data[topstates_india].nlargest(5, 'Confirmed')
# Russia
topstates_russia = data['Country'] == 'Russia'
topstates_russia = data[topstates_russia].nlargest(5, 'Confirmed')

We are extracting States’ data from USA, Brazil, India and Russia respectively because, these are the countries which are most affected by COVID-19. Now, let’s visualize it!

我们分别从美国,巴西,印度和俄罗斯提取州的数据,因为这是受COVID-19影响最大的国家。 现在,让我们对其进行可视化!

Visualization of Most affected states in largely affected Countries:

受影响最大的国家中受影响最大的州的可视化:

i) Most affected States in USA:

i)美国受影响最严重的州:

The following code will produce a plot ranking top 5 most affected states in the United States of America.

以下代码将产生一个在美国受灾最严重的州中排名前5位的地块。

# USA 
fig5 = go.Figure(data = [go.Bar(name = 'Active Cases', x = topstates_us['Active'], y = topstates_us['State'], orientation = 'h'),go.Bar(name = 'Death Cases', x = topstates_us['Deaths'], y = topstates_us['State'], orientation = 'h')
])
fig5.update_layout(title = 'Most Affected States in USA', height = 600)
fig5.show()

演示地址

Graph by Author
作者图

ii) Most affected States in Brazil:

ii)巴西受影响最严重的国家:

The following code will produce a plot ranking top 5 most affected states in Brazil.

以下代码将产生一个在巴西受影响最严重的州中排名前5位的地块。

# Brazil
fig6 = go.Figure(data = [go.Bar(name = 'Recovered Cases', x = topstates_brazil['State'], y = topstates_brazil['Recovered']),go.Bar(name = 'Active Cases', x = topstates_brazil['State'], y = topstates_brazil['Active']),go.Bar(name = 'Death Cases', x = topstates_brazil['State'], y = topstates_brazil['Deaths'])
])
fig6.update_layout(title = 'Most Affected States in Brazil', barmode = 'stack', height = 600)
fig6.show()

演示地址

Graph by Author
作者图

iii) Most affected States in India:

iii)印度受影响最大的国家:

The following code will produce a plot ranking top 5 most affected states in India.

以下代码将产生一个在印度受影响最严重的州中排名前5位的地块。

# India
fig7 = go.Figure(data = [go.Bar(name = 'Recovered Cases', x = topstates_india['State'], y = topstates_india['Recovered']),go.Bar(name = 'Active Cases', x = topstates_india['State'], y = topstates_india['Active']),go.Bar(name = 'Death Cases', x = topstates_india['State'], y = topstates_india['Deaths'])
])
fig7.update_layout(title = 'Most Affected States in India', barmode = 'stack', height = 600)
fig7.show()

演示地址

Graph by Author
作者图

iv) Most affected States in Russia:

iv)俄罗斯受影响最严重的国家:

The following code will produce a plot ranking top 5 most affected states in Russia.

以下代码将产生一个在俄罗斯受影响最严重的州中排名前5位的地块。

# Russia
fig8 = go.Figure(data = [go.Bar(name = 'Recovered Cases', x = topstates_russia['State'], y = topstates_russia['Recovered']),go.Bar(name = 'Active Cases', x = topstates_russia['State'], y = topstates_russia['Active']),go.Bar(name = 'Death Cases', x = topstates_russia['State'], y = topstates_russia['Deaths'])
])
fig8.update_layout(title = 'Most Affected States in Russia', barmode = 'stack', height = 600)
fig8.show()

演示地址

Graph by Author
作者图

Time Series on COVID-19 Cases

COVID-19病例的时间序列

To perform time series analysis on COVID-19 cases we need a new dataset. https://covid19.who.int/ Follow this link and images shown below for downloading our next dataset.

要对COVID-19案例执行时间序列分析,我们需要一个新的数据集。 https://covid19.who.int/请点击下面的链接和图像,下载我们的下一个数据集。

Image for post

After pressing the link mentioned above, you will land into this page. On the bottom right of the represented map, you can find the download button. From there you can download the dataset and save it to your files. Good work! We fetched our Data! Let’s import the data :

按下上述链接后,您将进入此页面。 在所显示地图的右下角,您可以找到下载按钮。 从那里您可以下载数据集并将其保存到文件中。 干得好! 我们获取了数据! 让我们导入数据:

time_series = pd.read_csv('who_data.csv', encoding = 'ISO-8859-1')
time_series['Date_reported'] = pd.to_datetime(time_series['Date_reported'])

From the above extracted dataset, we are going to perform two types of time series analysis, ‘COVID-19 cases Worldwide’ and ‘Most affected countries over time’.

从上面提取的数据集中,我们将执行两种类型的时间序列分析:“全球COVID-19病例”和“一段时间内受影响最大的国家”。

i) COVID-19 cases worldwide:

i)全球COVID-19病例:

EDA for COVID-19 cases worldwide:

全球COVID-19案件的EDA:

time_series_dates = time_series.groupby('Date_reported').sum()
time_series_dates

a) Cumulative cases worldwide:

a)全世界的累积病例:

The following code produces a time series chart of cumulative cases worldwide right from the beginning of the outbreak.

以下代码从爆发开始就生成了全球累积病例的时序图。

# Cumulative casesfig11 = go.Figure()
fig11.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' Cumulative_cases'], fill = 'tonexty',line_color = 'blue'))
fig11.update_layout(title = 'Cumulative Cases Worldwide')
fig11.show()

演示地址

Graph by Author
作者图

b) Cumulative death cases worldwide:

b)世界范围内的累积死亡案例:

The following code produces a time series chart of cumulative death cases worldwide right from the beginning of the outbreak.

以下代码从爆发开始就生成了全球累积死亡病例的时间序列图。

# Cumulative death casesfig12 = go.Figure()
fig12.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' Cumulative_deaths'], fill = 'tonexty',line_color = 'red'))
fig12.update_layout(title = 'Cumulative Deaths Worldwide')
fig12.show()

演示地址

Graph by Author
作者图

c) Daily new cases worldwide:

c)全世界每天的新病例:

The following code produces a time series chart of daily new cases worldwide right from the beginning of the outbreak.

以下代码从爆发开始就生成了全球每日新病例的时序图。

# Daily new casesfig13 = go.Figure()
fig13.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' New_cases'], fill = 'tonexty',line_color = 'gold'))
fig13.update_layout(title = 'Daily New Cases Worldwide')
fig13.show()

演示地址

Graph by Author
作者图

d) Daily death cases worldwide:

d)全世界每日死亡案例:

The following code produces a time series chart of daily death cases worldwide right from the beginning of the outbreak.

以下代码从爆发开始就生成了全球每日死亡病例的时间序列图。

# Daily death casesfig14 = go.Figure()
fig14.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' New_deaths'], fill = 'tonexty',line_color = 'hotpink'))
fig14.update_layout(title = 'Daily Death Cases Worldwide')
fig14.show()

演示地址

Graph by Author
作者图

ii) Most affected countries over time:

ii)一段时间内受影响最大的国家:

EDA for Most affected countries over time:

随时间推移对受影响最严重国家的EDA:

# USA 
time_series_us = time_series[' Country'] == ('United States of America')
time_series_us = time_series[time_series_us]# Brazil
time_series_brazil = time_series[' Country'] == ('Brazil')
time_series_brazil = time_series[time_series_brazil]# India
time_series_india = time_series[' Country'] == ('India')
time_series_india = time_series[time_series_india]# Russia
time_series_russia = time_series[' Country'] == ('Russia')
time_series_russia = time_series[time_series_russia]# Peru
time_series_peru = time_series[' Country'] == ('Peru')
time_series_peru = time_series[time_series_peru]

Note that, we have extracted data of countries USA, Brazil, India, Russia and Peru respectively as they are highly affected by COVID-19 in the world.

请注意,我们分别提取了美国,巴西,印度,俄罗斯和秘鲁等国家/地区的数据,因为它们在世界范围内受到COVID-19的高度影响。

a) Most affected Countries’ Cumulative cases over time

a)随时间推移受影响最严重的国家的累计案件

The following code will produce a time series chart of the most affected countries’ cumulative cases right from the beginning of the outbreak.

以下代码将从疫情爆发之初就产生受影响最严重国家累计病例的时序图。

# Cumulative casesfig15 = go.Figure()fig15.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' Cumulative_cases'], name = 'USA'))
fig15.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' Cumulative_cases'], name = 'Brazil'))
fig15.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' Cumulative_cases'], name = 'India'))
fig15.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' Cumulative_cases'], name = 'Russia'))
fig15.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' Cumulative_cases'], name = 'Peru'))fig15.update_layout(title = 'Time Series of Most Affected countries"s Cumulative Cases')fig15.show()

演示地址

Graph by Author
作者图

b) Most affected Countries’ cumulative death cases over time:

b)随着时间的推移,大多数受影响国家的累计死亡病例:

The following code will produce a time series chart of the most affected countries’ cumulative death cases right from the beginning of the outbreak.

以下代码将从疫情爆发之初就绘制出受影响最严重国家累计死亡病例的时间序列图。

# Cumulative death casesfig16 = go.Figure()fig16.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' Cumulative_deaths'], name = 'USA'))
fig16.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' Cumulative_deaths'], name = 'Brazil'))
fig16.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' Cumulative_deaths'], name = 'India'))
fig16.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' Cumulative_deaths'], name = 'Russia'))
fig16.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' Cumulative_deaths'], name = 'Peru'))fig16.update_layout(title = 'Time Series of Most Affected countries"s Cumulative Death Cases')fig16.show()

演示地址

Graph by Author
作者图

c) Most affected Countries’ daily new cases over time:

c)一段时间以来受影响最严重的国家的每日新病例:

The following code will produce a time series chart of the most affected countries’ daily new cases right from the beginning of the outbreak.

以下代码将从疫情爆发之初就产生受影响最严重国家的每日新病例的时序图。

# Daily new casesfig17 = go.Figure()fig17.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' New_cases'], name = 'USA'))
fig17.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' New_cases'], name = 'Brazil'))
fig17.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' New_cases'], name = 'India'))
fig17.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' New_cases'], name = 'Russia'))
fig17.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' New_cases'], name = 'Peru'))fig17.update_layout(title = 'Time Series of Most Affected countries"s Daily New Cases')fig17.show()

演示地址

Graph by Author
作者图

d) Most affected Countries’ daily death cases:

d)最受影响国家的每日死亡案例:

The following code will produce a time series chart of the most affected countries’ daily death cases right from the beginning of the outbreak.

以下代码将从疫情爆发之初就产生受影响最严重国家的每日死亡病例的时序图。

# Daily death casesfig18 = go.Figure()fig18.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' New_deaths'], name = 'USA'))
fig18.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' New_deaths'], name = 'Brazil'))
fig18.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' New_deaths'], name = 'India'))
fig18.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' New_deaths'], name = 'Russia'))
fig18.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' New_deaths'], name = 'Peru'))fig18.update_layout(title = 'Time Series of Most Affected countries"s Daily Death Cases')fig18.show()

演示地址

Graph by Author
作者图

Case Classification and Distribution

病例分类与分布

Here we are going to analyze how COVID-19 cases are distributed. For this, we need a new dataset. https://www.kaggle.com/imdevskp/corona-virus-report Follow this link for our new dataset.

在这里,我们将分析COVID-19案例的分布方式。 为此,我们需要一个新的数据集。 https://www.kaggle.com/imdevskp/corona-virus-report请点击此链接以获取新数据集。

i) WHO Region-Wise Case Distribution:

i)世卫组织区域明智病例分布:

For this analysis, we are going to use ‘country_wise_latest.csv’ dataset which will come along with the downloaded kaggle dataset. The following code produces a pie chart representing case distribution among WHO Region classification.

对于此分析,我们将使用“ country_wise_latest.csv”数据集,该数据集将与下载的kaggle数据集一起提供。 以下代码生成了一个饼图,代表了WHO区域分类之间的病例分布。

who = pd.read_csv('country_wise_latest.csv')
who_region = pd.DataFrame(who.groupby('WHO Region')['Confirmed'].sum())labels = who_region.index
values = who_region['Confirmed']fig9 = go.Figure(data=[go.Pie(labels = labels, values = values, pull=[0, 0, 0, 0, 0.2, 0])])fig9.update_layout(title = 'WHO Region-Wise Case Distribution', width = 700, height = 400, margin = dict(t = 0, l = 0, r = 0, b = 0))fig9.show()

演示地址

Graph by Author
作者图

ii) Most affected Countries’ case distribution:

ii)最受影响国家的案件分布:

For this analysis we are going to use the same ‘country_wise_latest.csv’ dataset which we imported for the previous analysis.

对于此分析,我们将使用为先前的分析导入的相同“ country_wise_latest.csv”数据集。

EDA for Most affected countries’ case distribution:

受影响最严重国家的EDA分布:

case_dist = who# US
dist_us = case_dist['Country/Region'] == 'US'
dist_us = case_dist[dist_us][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')# Brazil
dist_brazil = case_dist['Country/Region'] == 'Brazil'
dist_brazil = case_dist[dist_brazil][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')# India
dist_india = case_dist['Country/Region'] == 'India'
dist_india = case_dist[dist_india][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')# Russia
dist_russia = case_dist['Country/Region'] == 'Russia'
dist_russia = case_dist[dist_russia][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')

The following code will produce a pie chart representing the case classification on Most affected Countries.

以下代码将生成一个饼状图,代表大多数受影响国家/地区的案件分类。

fig = plt.figure(figsize = (22,14))
colors_series = ['deepskyblue','gold','springgreen','coral']
explode = (0,0,0.1)plt.subplot(221)
plt.pie(dist_us, labels = dist_us.columns, colors = colors_series, explode = explode,startangle = 90,autopct = '%.1f%%', shadow = True)
plt.title('USA', fontsize = 16)plt.subplot(222)
plt.pie(dist_brazil, labels = dist_brazil.columns, colors = colors_series, explode = explode,startangle = 90,autopct = '%.1f%%',shadow = True)
plt.title('Brazil', fontsize = 16)plt.subplot(223)
plt.pie(dist_india, labels = dist_india.columns, colors = colors_series, explode = explode, startangle = 90, autopct = '%.1f%%',shadow = True)
plt.title('India', fontsize = 16)plt.subplot(224)
plt.pie(dist_russia, labels = dist_russia.columns, colors = colors_series, explode = explode, startangle = 90,autopct = '%.1f%%', shadow = True)
plt.title('Russia', fontsize = 16)plt.suptitle('Case Classification of Most Affected Countries', fontsize = 20)
Image for post
Graph by Author
作者图

iii) Most affected continents’ Negative case vs Positive case percentage composition:

iii)受灾最严重的大陆的消极案例与积极案例的百分比构成:

For this analysis we need a new dataset. https://ourworldindata.org/coronavirus-source-data Follow this link to get our next dataset.

对于此分析,我们需要一个新的数据集。 https://ourworldindata.org/coronavirus-source-data单击此链接以获取我们的下一个数据集。

EDA for Negative case vs Positive case percentage composition :

负面案例与正面案例所占百分比的EDA:

negative_positive = pd.read_csv('owid-covid-data.csv')
negative_positive = negative_positive.groupby('continent')[['total_cases','total_tests']].sum()explode = (0,0.1)
labels = ['Postive','Negative']
colors = ['beige','paleturquoise']

The following code will produce a pie chart illustrating the percentage composition of Negative cases and Positive cases in most affected Continents.

以下代码将产生一个饼图,说明在受影响最大的大陆中,阴性案例和阳性案例的百分比构成。

fig = plt.figure(figsize = (20,20))plt.subplot(321)
plt.pie(negative_positive[negative_positive.index == 'Asia'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('Asia', fontsize = 15)plt.subplot(322)
plt.pie(negative_positive[negative_positive.index == 'North America'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('North America', fontsize = 15)plt.subplot(323)
plt.pie(negative_positive[negative_positive.index == 'South America'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('South America', fontsize = 15)plt.subplot(324)
plt.pie(negative_positive[negative_positive.index == 'Europe'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('Europe', fontsize = 15)plt.suptitle('Continent-Wise Tested Positive & Negative Percentage Composition', fontsize = 20)
Image for post
Graph by Author
作者图

结论 (Conclusion)

Hurrah! We successfully completed creating our own COVID-19 report with Python. If you forgot to follow any above mentioned steps I have provided the full code for this analysis below. Apart from our analysis, there are much more you can do with Python and its powerful packages. So don’t stop exploring and create your own reports and dashboards.

欢呼! 我们已经成功地使用Python创建了自己的COVID-19报告。 如果您忘记了执行上述任何步骤,则在下面提供了此分析的完整代码。 除了我们的分析之外,Python及其强大的软件包还可以做更多的事情。 因此,不要停止探索并创建自己的报告和仪表板。

You can find many useful resources on internet based on data science in python for example edX, Coursera, Udemy and so on but, never ever stop learning. Hope you find this article useful and knowledgeable. Happy Analyzing!

您可以在python中基于数据科学在Internet上找到许多有用的资源,例如edX,Coursera,Udemy等,但永远都不要停止学习。 希望您发现本文有用且知识渊博。 分析愉快!

FULL CODE:

完整代码:

import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import numpy as np
import plotly
import plotly.graph_objects as go
import datetime as dt
import requests
from plotly.subplots import make_subplots# Getting Dataurl_request = requests.get("https://services1.arcgis.com/0MSEUqKaxRlEPj5g/arcgis/rest/services/Coronavirus_2019_nCoV_Cases/FeatureServer/1/query?where=1%3D1&outFields=*&outSR=4326&f=json")
url_json = url_request.json()
df = pd.DataFrame(url_json['features'])
df['attributes'][0]# Data Wrangling# a. transforming datadata_list = df['attributes'].tolist()
data = pd.DataFrame(data_list)
data.set_index('OBJECTID')
data = data[['Province_State','Country_Region','Last_Update','Lat','Long_','Confirmed','Recovered','Deaths','Active']]
data.columns = ('State','Country','Last Update','Lat','Long','Confirmed','Recovered','Deaths','Active')
data['State'].fillna(value = '', inplace = True)
data# b. cleaning datadef convert_time(t):t = int(t)return dt.datetime.fromtimestamp(t)data = data.dropna(subset = ['Last Update'])
data['Last Update'] = data['Last Update']/1000
data['Last Update'] = data['Last Update'].apply(convert_time)
data# Exploratory Data Analysis & Visualization# Our analysis contains 'Ranking countries and provinces', 'Time Series' and 'Classification and Distribution'# 1. Ranking countries and provinces
# a. Top 10 confirmed countries (Bubble plot)top10_confirmed = pd.DataFrame(data.groupby('Country')['Confirmed'].sum().nlargest(10).sort_values(ascending = False))
fig1 = px.scatter(top10_confirmed, x = top10_confirmed.index, y = 'Confirmed', size = 'Confirmed', size_max = 120,color = top10_confirmed.index, title = 'Top 10 Confirmed Cases Countries')
fig1.show()# b. Top 10 deaths countries (h-Bar plot)top10_deaths = pd.DataFrame(data.groupby('Country')['Deaths'].sum().nlargest(10).sort_values(ascending = True))
fig2 = px.bar(top10_deaths, x = 'Deaths', y = top10_deaths.index, height = 600, color = 'Deaths', orientation = 'h',color_continuous_scale = ['deepskyblue','red'], title = 'Top 10 Death Cases Countries')
fig2.show()# c. Top 10 recovered countries (Bar plot)top10_recovered = pd.DataFrame(data.groupby('Country')['Recovered'].sum().nlargest(10).sort_values(ascending = False))
fig3 = px.bar(top10_recovered, x = top10_recovered.index, y = 'Recovered', height = 600, color = 'Recovered',title = 'Top 10 Recovered Cases Countries', color_continuous_scale = px.colors.sequential.Viridis)
fig3.show()# d. Top 10 active countriestop10_active = pd.DataFrame(data.groupby('Country')['Active'].sum().nlargest(10).sort_values(ascending = True))
fig4 = px.bar(top10_active, x = 'Active', y = top10_active.index, height = 600, color = 'Active', orientation = 'h',color_continuous_scale = ['paleturquoise','blue'], title = 'Top 10 Active Cases Countries')
fig4.show()# e. Most affected states/provinces in largely affected countries
# Here we are going to extract top 4 affected countries' states data and plot it!# Firstly, aggregating data with our dataset :
# USA
topstates_us = data['Country'] == 'US'
topstates_us = data[topstates_us].nlargest(5, 'Confirmed')
# Brazil
topstates_brazil = data['Country'] == 'Brazil'
topstates_brazil = data[topstates_brazil].nlargest(5, 'Confirmed')
# India
topstates_india = data['Country'] == 'India'
topstates_india = data[topstates_india].nlargest(5, 'Confirmed')
# Russia
topstates_russia = data['Country'] == 'Russia'
topstates_russia = data[topstates_russia].nlargest(5, 'Confirmed')# Let's plot!
# USA 
fig5 = go.Figure(data = [go.Bar(name = 'Active Cases', x = topstates_us['Active'], y = topstates_us['State'], orientation = 'h'),go.Bar(name = 'Death Cases', x = topstates_us['Deaths'], y = topstates_us['State'], orientation = 'h')
])
fig5.update_layout(title = 'Most Affected States in USA', height = 600)
fig5.show()
# Brazil
fig6 = go.Figure(data = [go.Bar(name = 'Recovered Cases', x = topstates_brazil['State'], y = topstates_brazil['Recovered']),go.Bar(name = 'Active Cases', x = topstates_brazil['State'], y = topstates_brazil['Active']),go.Bar(name = 'Death Cases', x = topstates_brazil['State'], y = topstates_brazil['Deaths'])
])
fig6.update_layout(title = 'Most Affected States in Brazil', barmode = 'stack', height = 600)
fig6.show()
# India
fig7 = go.Figure(data = [go.Bar(name = 'Recovered Cases', x = topstates_india['State'], y = topstates_india['Recovered']),go.Bar(name = 'Active Cases', x = topstates_india['State'], y = topstates_india['Active']),go.Bar(name = 'Death Cases', x = topstates_india['State'], y = topstates_india['Deaths'])
])
fig7.update_layout(title = 'Most Affected States in India', barmode = 'stack', height = 600)
fig7.show()
# Russia
fig8 = go.Figure(data = [go.Bar(name = 'Recovered Cases', x = topstates_russia['State'], y = topstates_russia['Recovered']),go.Bar(name = 'Active Cases', x = topstates_russia['State'], y = topstates_russia['Active']),go.Bar(name = 'Death Cases', x = topstates_russia['State'], y = topstates_russia['Deaths'])
])
fig8.update_layout(title = 'Most Affected States in Russia', barmode = 'stack', height = 600)
fig8.show()# 2. Time series of top affected countries
# We need a new data for this plot 
# https://covid19.who.int/ follow the link for this link for the next dataset(you can find the download option on the bottomright of the map chart)
time_series = pd.read_csv('who_data.csv', encoding = 'ISO-8859-1')
time_series['Date_reported'] = pd.to_datetime(time_series['Date_reported'])# a. Covid-19 cases worldwide
# Firsty Data
time_series_dates = time_series.groupby('Date_reported').sum()# Let's Plot
# Cumulative cases
fig11 = go.Figure()
fig11.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' Cumulative_cases'], fill = 'tonexty',line_color = 'blue'))
fig11.update_layout(title = 'Cumulative Cases Worldwide')
fig11.show()
# Cumulative death cases
fig12 = go.Figure()
fig12.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' Cumulative_deaths'], fill = 'tonexty',line_color = 'red'))
fig12.update_layout(title = 'Cumulative Deaths Worldwide')
fig12.show()
# Daily new cases
fig13 = go.Figure()
fig13.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' New_cases'], fill = 'tonexty',line_color = 'gold'))
fig13.update_layout(title = 'Daily New Cases Worldwide')
fig13.show()
# Daily death cases
fig14 = go.Figure()
fig14.add_trace(go.Scatter(x = time_series_dates.index, y = time_series_dates[' New_deaths'], fill = 'tonexty',line_color = 'hotpink'))
fig14.update_layout(title = 'Daily Death Cases Worldwide')
fig14.show()# b. Most Affected Countries over the time
# Data
# USA 
time_series_us = time_series[' Country'] == ('United States of America')
time_series_us = time_series[time_series_us]
# Brazil
time_series_brazil = time_series[' Country'] == ('Brazil')
time_series_brazil = time_series[time_series_brazil]
# India
time_series_india = time_series[' Country'] == ('India')
time_series_india = time_series[time_series_india]
# Russia
time_series_russia = time_series[' Country'] == ('Russia')
time_series_russia = time_series[time_series_russia]
# Peru
time_series_peru = time_series[' Country'] == ('Peru')
time_series_peru = time_series[time_series_peru]# Let's plot
# Cumulative cases
fig15 = go.Figure()
fig15.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' Cumulative_cases'], name = 'USA'))
fig15.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' Cumulative_cases'], name = 'Brazil'))
fig15.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' Cumulative_cases'], name = 'India'))
fig15.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' Cumulative_cases'], name = 'Russia'))
fig15.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' Cumulative_cases'], name = 'Peru'))
fig15.update_layout(title = 'Time Series of Most Affected countries"s Cumulative Cases')
fig15.show()
# Cumulative death cases
fig16 = go.Figure()
fig16.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' Cumulative_deaths'], name = 'USA'))
fig16.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' Cumulative_deaths'], name = 'Brazil'))
fig16.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' Cumulative_deaths'], name = 'India'))
fig16.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' Cumulative_deaths'], name = 'Russia'))
fig16.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' Cumulative_deaths'], name = 'Peru'))
fig16.update_layout(title = 'Time Series of Most Affected countries"s Cumulative Death Cases')
fig16.show()
# Daily new cases
fig17 = go.Figure()
fig17.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' New_cases'], name = 'USA'))
fig17.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' New_cases'], name = 'Brazil'))
fig17.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' New_cases'], name = 'India'))
fig17.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' New_cases'], name = 'Russia'))
fig17.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' New_cases'], name = 'Peru'))
fig17.update_layout(title = 'Time Series of Most Affected countries"s Daily New Cases')
fig17.show()
# Daily death cases
fig18 = go.Figure()
fig18.add_trace(go.Line(x = time_series_us['Date_reported'], y = time_series_us[' New_deaths'], name = 'USA'))
fig18.add_trace(go.Line(x = time_series_brazil['Date_reported'], y = time_series_brazil[' New_deaths'], name = 'Brazil'))
fig18.add_trace(go.Line(x = time_series_india['Date_reported'], y = time_series_india[' New_deaths'], name = 'India'))
fig18.add_trace(go.Line(x = time_series_russia['Date_reported'], y = time_series_russia[' New_deaths'], name = 'Russia'))
fig18.add_trace(go.Line(x = time_series_peru['Date_reported'], y = time_series_peru[' New_deaths'], name = 'Peru'))
fig18.update_layout(title = 'Time Series of Most Affected countries"s Daily Death Cases')
fig18.show()# 3. Case Classification and Distribution# For this we need a new dataset 
# https://www.kaggle.com/imdevskp/corona-virus-report follow this link for the next dataset# a. WHO Region-Wise Distribution
# For this plot we are going to use country_wise_latest dataset which will come along with the downloaded kaggle dataset
# Firstly Data
who = pd.read_csv('country_wise_latest.csv')
who_region = pd.DataFrame(who.groupby('WHO Region')['Confirmed'].sum())
labels = who_region.index
values = who_region['Confirmed']
# Let's Plot!
fig9 = go.Figure(data=[go.Pie(labels = labels, values = values, pull=[0, 0, 0, 0, 0.2, 0])])
fig9.update_layout(title = 'WHO Region-Wise Case Distribution', width = 700, height = 400, margin = dict(t = 0, l = 0, r = 0, b = 0))
fig9.show()# b. Most Affected countries case distribution
# For this plot we are going to use the same country_wise_latest dataset# Firstly Data
case_dist = who
# US
dist_us = case_dist['Country/Region'] == 'US'
dist_us = case_dist[dist_us][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')
# Brazil
dist_brazil = case_dist['Country/Region'] == 'Brazil'
dist_brazil = case_dist[dist_brazil][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')
# India
dist_india = case_dist['Country/Region'] == 'India'
dist_india = case_dist[dist_india][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')
# Russia
dist_russia = case_dist['Country/Region'] == 'Russia'
dist_russia = case_dist[dist_russia][['Country/Region','Deaths','Recovered','Active']].set_index('Country/Region')# Let's Plot!
# This plot is produced with matplotlib
fig = plt.figure(figsize = (22,14))
colors_series = ['deepskyblue','gold','springgreen','coral']
explode = (0,0,0.1)plt.subplot(221)
plt.pie(dist_us, labels = dist_us.columns, colors = colors_series, explode = explode,startangle = 90,autopct = '%.1f%%', shadow = True)
plt.title('USA', fontsize = 16)plt.subplot(222)
plt.pie(dist_brazil, labels = dist_brazil.columns, colors = colors_series, explode = explode,startangle = 90,autopct = '%.1f%%',shadow = True)
plt.title('Brazil', fontsize = 16)plt.subplot(223)
plt.pie(dist_india, labels = dist_india.columns, colors = colors_series, explode = explode, startangle = 90, autopct = '%.1f%%',shadow = True)
plt.title('India', fontsize = 16)plt.subplot(224)
plt.pie(dist_russia, labels = dist_russia.columns, colors = colors_series, explode = explode, startangle = 90,autopct = '%.1f%%', shadow = True)
plt.title('Russia', fontsize = 16)plt.suptitle('Case Classification of Most Affected Countries', fontsize = 20)# c. Most affected continents' negative case vs positive case percentage composition
# For this we need a new dataset 
# https://ourworldindata.org/coronavirus-source-data Follow this link for our next dataset# Firstly Data
negative_positive = pd.read_csv('owid-covid-data.csv')
negative_positive = negative_positive.groupby('continent')[['total_cases','total_tests']].sum()
explode = (0,0.1)
labels = ['Postive','Negative']
colors = ['beige','paleturquoise']#Let's Plot!
fig = plt.figure(figsize = (20,20))
plt.subplot(321)
plt.pie(negative_positive[negative_positive.index == 'Asia'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('Asia', fontsize = 15)plt.subplot(322)
plt.pie(negative_positive[negative_positive.index == 'North America'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('North America', fontsize = 15)plt.subplot(323)
plt.pie(negative_positive[negative_positive.index == 'South America'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('South America', fontsize = 15)plt.subplot(324)
plt.pie(negative_positive[negative_positive.index == 'Europe'],labels = labels, explode = explode, autopct = '%.1f%%', startangle = 90, colors = colors, shadow = True)
plt.title('Europe', fontsize = 15)plt.suptitle('Continent-Wise Tested Positive & Negative Percentage Composition', fontsize = 20)

翻译自: https://medium.com/swlh/covid-19-analysis-with-python-b898181ea627

用python进行营销分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/389176.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Alpha冲刺第二天

Alpha第二天 1.团队成员 郑西坤 031602542 (队长) 陈俊杰 031602504陈顺兴 031602505张胜男 031602540廖钰萍 031602323雷光游 031602319苏芳锃 0316023302.项目燃尽图 3.项目进展 时间工作内容11月18日UI设计、初步架构搭建11月19日UI设计、服务器的进一…

水文分析提取河网_基于图的河网段地理信息分析排序算法

水文分析提取河网The topic of this article is the application of information technologies in environmental science, namely, in hydrology. Below is a description of the algorithm for ranking rivers and the plugin we implemented for the open-source geographic…

请不要更多的基本情节

“If I see one more basic blue bar plot…”“如果我再看到一个基本的蓝色条形图……” After completing the first module in my studies at Flatiron School NYC, I started playing with plot customizations and design using Seaborn and Matplotlib. Much like doodl…

Powershell-获取DHCP地址租用信息

需求&#xff1a;业务需要获取现阶段DHCP服务器所有地址租用信息。 1.首先查看DHCP相关帮助信息&#xff1a;2.确定执行命令并获取相关帮助信息&#xff1a;help Get-DhcpServerv4Scope 名称 Get-DhcpServerv4Scope 语法 Get-DhcpServerv4Scope [[-ScopeId] <ipaddress[]>…

python 交互式流程图_使用Python创建漂亮的交互式和弦图

python 交互式流程图Python中的数据可视化 (Data Visualization in Python) R vs Python is a constant tussle when it comes to what is the best language, according to data scientists. Though each language has it’s strengths, R, in my opinion has one cutting-edg…

机器学习解决什么问题_机器学习帮助解决水危机

机器学习解决什么问题According to Water.org and Lifewater International, out of 57 million people in Tanzania, 25 million do not have access to safe water. Women and children must travel each day multiple times to gather water when the safety of that water …

Viewport3D 类Viewport3D 类Viewport3D 类

.NET Framework 类库Viewport3D 类更新&#xff1a;2007 年 11 月为三维可视内容提供呈现图面。命名空间&#xff1a; System.Windows.Controls程序集&#xff1a; PresentationFramework&#xff08;在 PresentationFramework.dll 中&#xff09;用于 XAML 的 XMLNS&#xf…

网络浏览器如何工作

Behind the scenes of modern Web Browsers现代Web浏览器的幕后花絮 The Web Browser is inarguably the most common portal for users to access the web. The advancement of the web browsers (through the series of history) has led many traditional “thick clients”…

让自己的头脑极度开放

为什么80%的码农都做不了架构师&#xff1f;>>> 一. 头脑封闭和头脑开放 头脑封闭 你是否经常有这样的经历&#xff0c;在一次会议或者在一次小组讨论时&#xff0c;当你提出一个观点而被别人否定时&#xff0c;你非常急迫地去反驳别人&#xff0c;从而捍卫自己的尊…

简介DOTNET 编译原理 简介DOTNET 编译原理 简介DOTNET 编译原理

简介DOTNET 编译原理 相信大家都使用过 Dotnet &#xff0c;可能还有不少高手。不过我还要讲讲Dotnet的基础知识&#xff0c;Dotnet的编译原理。 Dotnet是一种建立在虚拟机上执行的语言&#xff0c;它直接生成 MSIL 的中间语言&#xff0c;再由DotNet编译器 JIT 解释映象为本机…

RecyclerView详细了解

关于RecyclerView大家都不陌生了&#xff0c;它的使用也越来越受欢迎&#xff0c;现在总体了解一下RecyclerView的作用&#xff0c;为什么会有RecyclerView呢&#xff0c;我用ListView也能干所有的事情啊&#xff0c;尺有所短&#xff0c;寸有所长&#xff0c;先来看看Recycler…

案例与案例之间的非常规排版

In 1929 the Cond Nast publishing group brought Russian-born Mehemed Fehmy Agha—who had been working for the German edition of Vogue magazine—to America as art director for House & Garden, Vanity Fair, and the senior edition of Vogue.1929年&#xff0c…

熊猫分发_熊猫新手:第二部分

熊猫分发This article is a continuation of a previous article which kick-started the journey to learning Python for data analysis. You can check out the previous article here: Pandas for Newbies: An Introduction Part I.本文是上一篇文章的延续&#xff0c;该文…

浅析微信支付:申请退款、退款回调接口、查询退款

本文是【浅析微信支付】系列文章的第八篇&#xff0c;主要讲解商户如何处理微信申请退款、退款回调、查询退款接口&#xff0c;其中有一些坑的地方&#xff0c;会着重强调。 浅析微信支付系列已经更新七篇了哟&#xff5e;&#xff0c;没有看过的朋友们可以看一下哦。 浅析微信…

view工作原理-计算视图大小的过程(onMeasure)

view的视图有两种情况&#xff1a; 内容型视图&#xff1a;由视图的内容决定其大小。图形型视图&#xff1a;父视图为view动态调整大小。 ### measure的本质 把视图布局使用的“相对值”转化成具体值的过程&#xff0c;即把WRAP_CONTENT,MATCH_PARENT转化为具体的值。 measur…

基于Redis实现分布式锁实战

背景在很多互联网产品应用中&#xff0c;有些场景需要加锁处理&#xff0c;比如&#xff1a;秒杀&#xff0c;全局递增ID&#xff0c;楼层生成等等。大部分的解决方案是基于DB实现的&#xff0c;Redis为单进程单线程模式&#xff0c;采用队列模式将并发访问变成串行访问&#x…

数据分析 绩效_如何在绩效改善中使用数据分析

数据分析 绩效Imagine you need to do a bank transaction, but the website is so slow. The page takes so much time to load, all you can see is a blue circle.想象您需要进行银行交易&#xff0c;但是网站是如此缓慢。 该页面需要花费很多时间来加载&#xff0c;您只能看…

隐私策略_隐私图标

隐私策略During its 2020 Worldwide Developers Conference, Apple spent time on one of today’s hottest topics — privacy. During the past couple of years, Apple has been rolling out various public campaigns aiming to position itself as a company that respect…

您一直在寻找5+个简单的一线工具来提升Python可视化效果

Insightful and aesthetic visualizations don’t have to be a pain to create. This article will prevent 5 simple one-liners you can add to your code to increase its style and informational value.富有洞察力和美学的可视化不必费心创建。 本文将防止您添加到代码中…

figma 安装插件_彩色滤光片Figma插件,用于色盲

figma 安装插件So as a UX Designer, it is important to design with disabilities in mind. One of these is color blindness. It is important to make sure important information on your product is legible to everyone. This is why I like using this tool:因此&…