图像处理作业第7次
1.请根据课本中Z变换的定义,证明如下结论。
-
(1)若x(n)x(n)x(n)的ZZZ变换为X(z)X(z)X(z),则(−1)nx(n)(-1)^nx(n)(−1)nx(n)的ZZZ变换为X(−z)X(-z)X(−z)
根据ZZZ变换的定义 X(z)=∑x(n)z−n,∑(−1)nx(n)z−n=∑x(n)(−z)−n=X(−z)X(z)=\sum x(n)z^{-n},\sum(-1)^nx(n)z^{-n}=\sum x(n)(-z)^{-n}=X(-z)X(z)=∑x(n)z−n,∑(−1)nx(n)z−n=∑x(n)(−z)−n=X(−z)。 -
(2)若x(n)x(n)x(n)的ZZZ变换为X(z)X(z)X(z),则x(−n)x(-n)x(−n)的ZZZ变换为X(1z)X(\frac{1}{z})X(z1)
根据ZZZ变换的定义 X(z)=∑x(n)z−n,∑x(−n)z−n=∑x(n)z−(−n)=∑x(n)(1z)−n=X(1z)X(z)=\sum x(n)z^{-n},\sum x(-n)z^{-n}=\sum x(n)z^{-(-n)}=\sum x(n){(\frac{1}{z})}^{-n}=X(\frac{1}{z})X(z)=∑x(n)z−n,∑x(−n)z−n=∑x(n)z−(−n)=∑x(n)(z1)−n=X(z1)。 -
(3)若x(n)x(n)x(n)的ZZZ变换为X(z)X(z)X(z),证明:xdown(n)=x(2n)↔Xdown(z)=1/2[X(z1/2)+X(−z1/2)]x_{down}(n)=x(2n) \leftrightarrow X_{down}(z)=1/2[X(z^{1/2})+X(-z^{1/2})]xdown(n)=x(2n)↔Xdown(z)=1/2[X(z1/2)+X(−z1/2)]
根据ZZZ变换的定义可知:Xdown(z)=∑xdown(n)z−n=∑x(2n)z−n=∑1/2[x(2n)(z1/2)−2n+x(2n)(−z1/2)−2n]=∑1/2[x(2n)(z1/2)−2n+x(2n)(−z1/2)−2n]+∑1/2[x(2n−1)(z1/2)−(2n−1)+x(2n−1)(−z1/2)−(2n−1)]=1/2[X(z1/2)+X(−z1/2)]X_{down}(z)=\sum x_{down}(n)z^{-n}=\sum x(2n)z^{-n}=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]+\sum 1/2[x(2n-1)(z^{1/2})^{-(2n-1)}+x(2n-1)(-z^{1/2})^{-(2n-1)}]=1/2[X(z^{1/2})+X(-z^{1/2})]Xdown(z)=∑xdown(n)z−n=∑x(2n)z−n=∑1/2[x(2n)(z1/2)−2n+x(2n)(−z1/2)−2n]=∑1/2[x(2n)(z1/2)−2n+x(2n)(−z1/2)−2n]+∑1/2[x(2n−1)(z1/2)−(2n−1)+x(2n−1)(−z1/2)−(2n−1)]=1/2[X(z1/2)+X(−z1/2)]。
2.证明:
- 若G1(z)=−z−2k+1G0(−z−1)G_1(z)=-z^{-2k+1}G_0(-z^{-1})G1(z)=−z−2k+1G0(−z−1),证明:g1(n)=(−1)ng0(2k−1−n)g_1(n)=(-1)^ng_0(2k-1-n)g1(n)=(−1)ng0(2k−1−n)
−z2k+1G0(−z−1)↔∑g0(n)(−z−1)−n(−z−2k+1)=∑g0(n)(−1)n+1zn−2k+1-z^{2k+1}G_0(-z^{-1}) \leftrightarrow\sum g_0(n)(-z^{-1})^{-n}(-z^{-2k+1})=\sum g_0(n)(-1)^{n+1}z^{n-2k+1}−z2k+1G0(−z−1)↔∑g0(n)(−z−1)−n(−z−2k+1)=∑g0(n)(−1)n+1zn−2k+1
令−t=n−2k+1-t=n-2k+1−t=n−2k+1
那么
∑g0(n)(−1)n+1zn+2k+1=∑g0(2k−1−t)(−1)2k−tz−t\sum g_0(n)(-1)^{n+1}z^{n+2k+1}=\sum g_0(2k-1-t)(-1)^{2k-t}z^{-t}∑g0(n)(−1)n+1zn+2k+1=∑g0(2k−1−t)(−1)2k−tz−t
将ttt换成nnn,得到:
∑(−1)ng0(2k−1−n)z−n\sum (-1)^ng_0(2k-1-n)z^{-n}∑(−1)ng0(2k−1−n)z−n
因此g1(n)=(−1)ng0(2k−1−n)g_1(n)=(-1)^ng_0(2k-1-n)g1(n)=(−1)ng0(2k−1−n)
3.假设课本中给出完美重建滤波器的正交族对应的三个滤波器间的关系式是正确的,并以此为基础,推导h0,h1h_0,h_1h0,h1的关系。
当满足如下式子时:
g1(n)=(−1)ng0(2k−1−n)g_1(n)=(-1)^ng_0(2k-1-n)g1(n)=(−1)ng0(2k−1−n)
hi(n)=gi(2k−1−n),i={0,1}h_i(n)=g_i(2k-1-n),i=\{0,1\}hi(n)=gi(2k−1−n),i={0,1}
h0(n)=g0(2k−1−n)→g0(n)=h0(2k−1−n)h_0(n)=g_0(2k-1-n) \rightarrow g_0(n)=h_0(2k-1-n)h0(n)=g0(2k−1−n)→g0(n)=h0(2k−1−n)
h1(n)=g1(2k−1−n)=(−1)2k−1−ng0(2k−1−(2k−1−n))=(−1)n+1g0(n)=(−1)n+1h0(2k−1−n)h_1(n)=g_1(2k-1-n)=(-1)^{2k-1-n}g_0(2k-1-(2k-1-n))=(-1)^{n+1}g_0(n)=(-1)^{n+1}h_0(2k-1-n)h1(n)=g1(2k−1−n)=(−1)2k−1−ng0(2k−1−(2k−1−n))=(−1)n+1g0(n)=(−1)n+1h0(2k−1−n)
是故
h1(n)=(−1)n+1h0(2k−1−n)h_1(n)=(-1)^{n+1}h_0(2k-1-n)h1(n)=(−1)n+1h0(2k−1−n)
4. 哈尔小波
截图显示:
14[111111111111111111111111−1−1−1−1−1−1−1−12222−2−2−2−200000000000000002222−2−2−2−222−2−2000000000000000022−2−2000000000000000022−2−2000000000000000022−2−222−22000000000000000022−22000000000000000022−22000000000000000022−22000000000000000022−22000000000000000022−22000000000000000022−22000000000000000022−22]\frac{1}{4} \left[ \begin{matrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\\ \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & 0 & 0& 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2\\ 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2\\ 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2\\ \end{matrix} \right] 41⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡1120200022000000011202000−2200000001120−20000220000001120−20000−2200000011−20020000220000011−20020000−220000011−200−20000022000011−200−200000−2200001−10200200000220001−10200200000−220001−10200−200000022001−10200−2000000−22001−10−200020000002201−10−20002000000−2201−10−2000−20000000221−10−2000−20000000−22⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤