HDU5514 Frogs
题意:将\([0,m)\)所有符合\(a[i]*t ~mod~ m\)的值求和
做法:
- \(a[i]*t ~mod~ m\) 会在 \(gcd(a[i],m)\) 的倍数出现,因此问题等价与求:
\[ \sum_{i=1}^{m-1} [ [(a[1],m)|i] or [(a[2],m)|i] or ... or [(a[n],m)|i] ] i \] - 对于一个x,使得\(gcd(x,m)=g\),当存在一个\(gcd(a[i],m)|g\)时,则这个x就会被计入答案。
那么就可以枚举\(g\)来计算贡献了
\(gcd(i,m)=g\), 则\(gcd(i/g,m/g)=1\),那么对于一个\(g\)如果他存在一个\(gcd(a[i],m)|g\),贡献就是:
\[ \sum_{i=1}^{m-1} [gcd(i/g,m/g)=1]i = \sum_{i=1}^{m/g} [gcd(i,m/g)=1]i*g \]
又因为
\[ \sum_{i=1}^{n}[gcd(i,n)=1]i = \frac{\varphi(n)*n}{2} \]
证明:
\[ \sum_{i=1}^{n}[gcd(i,n)=1]i + \sum_{i=1}^{n}[gcd(n-i,n)=1](n-i) \\ = \sum_{i=1}^n [gcd(i,n)=1]n = n\varphi(n)\\ \sum_{i=1}^{n}[gcd(i,n)=1]i = \frac{\varphi(n)*n}{2} \] - 枚举m的约数g计算即可
#include <bits/stdc++.h>
typedef long long ll;
const int N = 1e4 + 7;
using namespace std;
int T,n;
ll m,a[N];//
//gcd(x,m) = g => gcd(x/g,m/g) = 1
//
//FOR : g|m
// if FOR : gcd(a[i],m)|g
// ans += {\sum [gcd(i/g,m/g) == 1]*i => \phi(m/g)*(m/g)/2*g => \phi(m/g)*m/2}
//
//hints:
//[gcd(i,n)==1] = [gcd(i,n-i)==1]
//\sum [gcd(i,n)==1]*i + \sum [gcd(n-i,n)==1]*(n-i) = n*\sum [gcd(i,n)==1] = n*phi(n)
//=> \sum [gcd(i,n)==1]*i = n*phi(n)/2ll b[1000007];
int cnt = 0;
int ck(ll g) {for(int i=0;i<n;++i) if(g%a[i]==0) return 1;return 0;
}
ll phi(ll x) {ll t = x;for(int i=2;i*i<=x;++i) if(x%i==0) {t-=t/i;while(x%i==0) x/=i;}if(x>1)t-=t/x;return t;
}
int main() {scanf("%d",&T);for(int ti=1;ti<=T;++ti) {scanf("%d%lld",&n,&m);int f = 0;for(int i=0;i<n;++i) {scanf("%lld",&a[i]);a[i] = __gcd(a[i],m);if(a[i]==1) f=1;}if(f) {printf("Case #%d: %lld\n",ti,(m-1)*m>>1LL);continue;}sort(a,a+n);n = unique(a,a+n) - a;cnt = 0;for(ll i=1;i*i<=m;++i) {if(m%i==0) {if(i*i == m) b[cnt++] = i;else {b[cnt++] = i;if(m/i!=1) b[cnt++] = m/i;}}}sort(b,b+cnt);cnt = unique(b,b+cnt) - b;ll ans = 0;for(int i=0;i<cnt;++i) {if(b[i]<m&&ck(b[i])) {ans+= phi(m/b[i]);}}ans*=m; ans/=2;printf("Case #%d: %lld\n",ti,ans);}return 0;
}