jzoj6065-[NOI2019模拟2019.3.18]One?One!【FFT】

正题

题目链接:https://gmoj.net/senior/#main/show/6065


题目大意

oneness(x)oneness(x)oneness(x)表示xxx的约数中全是111的数的个数,给出一个长度为lll的随机生成的数nnn,求∑i=1noneness(i)\sum_{i=1}^noneness(i)i=1noneness(i)


解题思路

转换一下题意就是求∑i=2l⌊n10i−19⌋=∑i=2l⌊9n10i−1⌋\sum_{i=2}^l\lfloor\frac{n}{\frac{10^i-1}{9}}\rfloor=\sum_{i=2}^l\lfloor\frac{9n}{10^i-1}\rfloori=2l910i1n=i=2l10i19n
先让nnn乘上999,然后把每一位的贡献拆成小数和整数部分,我们先来看整数部分

首先对于一个k∗10i10j−1\frac{k*10^i}{10^j-1}10j1k10i那么它的值应该是在第i−xj+1(x∈N)i-xj+1(x\in N)ixj+1(xN)位会有一个kkk。(如109999=1001001.001001001001001001001001\frac{10^9}{999}=1001001.001001001001001001001001999109=1001001.001001001001001001001001

然后我们看这题,jjj1∼n1\sim n1n的每一个值,那么对于每第iii位我们拆成k∗10ik*10^ik10i会对第i−xi-xix位产生σ0(x)\sigma_0(x)σ0(x)次贡献(σ0(x)\sigma_0(x)σ0(x)表示xxx的约数个数)。设aia_iai表示第iii位的数,fif_ifi表示第iii位的答案,那么有式子fi=∑j=0∞ai+jσ0(j)f_i=\sum_{j=0}^{\infty}a_{i+j}\sigma_0(j)fi=j=0ai+jσ0(j)
这个式子可以先预处理出σ0(j)\sigma_0(j)σ0(j)然后把aaa反过来就是一个卷积的式子,FFTFFTFFT优化即可。

对于小数部分,因为在比较后的位数的产生贡献概率极小,又因为数字随机生成,所以我们直接将这些部分省略。我们只处理到小数的121212位,和上面同理算出每一个小数位的贡献即可。

时间复杂度O(nlog⁡n)O(n\log n)O(nlogn)


codecodecode

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#define ll long long
using namespace std;
const ll N=1e6+10;
const double Pi=acos(-1);
struct complex{double x,y;complex(double xx=0,double yy=0){x=xx;y=yy;return;}
}x[N],y[N];
ll n,m,r[N],a[N],d[N],b[N],f[N];
unsigned int sed;
complex operator+(complex x,complex y)
{return complex(x.x+y.x,x.y+y.y);}
complex operator-(complex x,complex y)
{return complex(x.x-y.x,x.y-y.y);}
complex operator*(complex x,complex y)
{return complex(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);}
void fft(complex *f,ll op){for(ll i=0;i<m;i++)if(i<r[i])swap(f[i],f[r[i]]);for(ll p=2;p<=m;p<<=1){ll len=p>>1;complex tmp(cos(Pi/len),op*sin(Pi/len));for(ll k=0;k<m;k+=p){complex buf(1,0);for(ll i=k;i<k+len;i++){complex tt=f[i+len]*buf;f[i+len]=f[i]-tt;f[i]=f[i]+tt;buf=buf*tmp;}}}return;
}
void solve(){m=1;ll lg=0;for(;m<=2*n;m<<=1);for(ll i=0;i<=m;i++)r[i]=(r[i>>1]>>1)|((i&1)?(m>>1):0);for(ll i=1;i<=n;i++)x[i]=complex(a[n-i+1],0),y[i]=complex(d[i],0);fft(x,1);fft(y,1);for(ll i=0;i<m;i++)x[i]=x[i]*y[i];fft(x,-1);for(ll i=0;i<m;i++)f[i]=(int)(x[i].x/(double)m+0.5);return;
}
int main()
{scanf("%lld%u",&n,&sed);for(ll i=1;i<=n;i++){a[i]=sed/1024%10;sed=sed*747796405u-1403630843u;}reverse(a+1,a+n+1);ll g=0;for(ll i=1;i<=n;i++){a[i]=a[i]*9+g;g=a[i]/10;a[i]%=10;}if(g)a[++n]=g;for(ll i=2;i<=n;i++)for(ll j=i;j<=n;j+=i)d[j]++;solve();reverse(f+1,f+n+1);ll pw[11];pw[0]=1;for(ll i=1;i<=10;i++)pw[i]=pw[i-1]*10;for(ll i=2;i<=10;i++){ll S=0;for(ll j=1;j<=n;j+=i)for(ll k=1;k<=i;k++)S+=a[j+k-1]*pw[k-1];f[1]+=S/(pw[i]-1); }for(ll i=11;i<=n;i++){for(ll j=1;j<=12;j++)b[j]=0;for(ll j=1;j<=n;j+=i)for(ll k=1;k<=11;k++)b[k]+=a[j+i+k-12];for(ll j=1;j<=11;j++){b[j+1]+=b[j]/10;b[j]%=10;}f[1]+=b[12];}for(ll i=1;i<=n;i++){f[i+1]+=f[i]/10;f[i]%=10;}while(!f[n])n--;while(n)printf("%lld",f[n--]);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/320015.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

netcore编程之后面对不习惯的xshell黑屏部署,是时候使用jenkins自动化发布工具了...

在很久之前net还只能在windows上部署的时候&#xff0c;或许很多创业公司的朋友发布项目还都是人肉部署&#xff0c;反正windows都是可视化的界面&#xff0c;拖拖拉拉&#xff0c;开开关关还不是特别麻烦。。。现如今你的项目需要在linux上部署&#xff0c;可惜的是再也没有什…

【期望】关灯游戏(金牌导航 期望-8)

关灯游戏 金牌导航 期望-8 题目大意 有n盏灯&#xff0c;有些是亮的&#xff0c;有的是暗的&#xff0c;现在如果按一个位置的开关&#xff0c;那么是它因数的位置的灯都会改变开关情况&#xff0c;现在如果用k步不能直接关完&#xff0c;就随机按&#xff0c;直到可以k步关…

【招聘(重庆)】新空间(重庆)科技有限公司招聘.NET Core

全新平台公司&#xff0c;技术氛围好&#xff0c;未来上升空间巨大!平台架构师薪资范围&#xff1a;15K至40K岗位职责&#xff1a;1、负责公司业务以及相关平台的架构设计、技术选型、研发工作, 参与产品架构的规划与设计&#xff1b;2、遵循总体的架构规划与规范设计项目的应用…

jzoj6067-[NOI2019模拟2019.3.18]More?More!【dp】

正题 题目链接:https://gmoj.net/senior/#main/show/6067 题目大意 nnn个点的一张竞赛图&#xff0c;第iii个点向第jjj个点(i<j)(i<j)(i<j)连边的概率是ppp&#xff0c;否则就是第jjj个点向第iii个点连边。 对于每个i(i<n)i(i<n)i(i<n)求出能够选出一个大小…

[XSY3320] string (AC自动机,哈希,点分治)

XSY3320 前置芝士&#xff1a;回文前缀&&borderborderborder 推荐博客 推荐博客 考虑点分治&#xff0c;问题变成求经过重心的回文路径个数。 一条经过重心的回文路径长这样&#xff1a; xxx到zzz的串与yyy到rootrootroot的串相同。 建出根到每个节点对应的串的AC自…

【期望】守卫挑战(金牌导航 期望-9)

守卫挑战 金牌导航 期望-9 题目大意 有n个数&#xff0c;到第i个数&#xff0c;有p_i的概率选择这个数&#xff0c;问你最后选了最少L个数&#xff0c;且选的数的和再加k大于等于0 样例输入 3 1 0 10 20 30 -1 -1 2样例输出 0.300000数据范围 0⩽k⩽20000\leqslant k\leq…

xinjun与阴阳师

来源&#xff1a;牛客网 文章目录题目描述题解&#xff1a;代码&#xff1a;题目描述 xinjun是各类手游的狂热粉丝&#xff0c;因随手一氪、一氪上千而威震工大&#xff0c;现在他迷上了阴阳师。xinjun玩手游有一个习惯&#xff0c;就是经过层层计算制定出一套方案来使操作利益…

P3311-[SDOI2014]数数【AC自动机,dp】

正题 题目链接:https://www.luogu.com.cn/problem/P3311 题目大意 求一个不超过nnn的数字使其不包含任何sss集合中的数字串。 解题思路 很经典的ACACAC自动机上面dpdpdp&#xff0c;但是因为是数字所以要来点数位dpdpdp的东西&#xff0c;多开一维用0/10/10/1表示是否在上界…

如何在 ASP.Net Core 中使用 Consul 来存储配置

原文: USING CONSUL FOR STORING THE CONFIGURATION IN ASP.NET CORE作者: Nathanael[译者注&#xff1a;因急于分享给大家&#xff0c;所以本文翻译的很仓促&#xff0c;有些不准确的地方还望谅解]来自 Hashicorp 公司的 Consul 是一个用于分布式架构的工具&#xff0c;可以用…

[XSY3381] 踢罐子(几何)

XSY3381 点被选为点对之一的贡献我们单独计算&#xff08;这部分贡献的总和为4n(n−1)(n−2)4n(n-1)(n-2)4n(n−1)(n−2)&#xff09;。接下来只讨论剩余部分的贡献。 先把任意三个点构成的六种选择方案合并&#xff0c;发现在外接圆周和弦之间的点每个有2的贡献&#xff0c;…

GDKOI2021总结

前言 因为疫情的原因&#xff0c;以学校为单位在校参加&#xff01;&#xff08;就很秃然&#xff09; 注&#xff1a;前三天是普及组&#xff0c;后三天是提高组 Day 1 第一次参加&#xff0c;以为会被虐得成狗&#xff0c;以忐忑的心情打开T1 4⩽n⩽20004\leqslant n\leqs…

The Bottom of a Graph Poj 2553

牛客网 poj 2553 文章目录Description题意&#xff1a;题解&#xff1a;代码&#xff1a;Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be …

P7244-章节划分【RMQ,贪心,递归】

正题 题目链接:https://www.luogu.com.cn/problem/P7244?contestId38911 题目大意 nnn个数字&#xff0c;分成连续非空的kkk段要求每一段的最大值的gcdgcdgcd最大。 解题思路 首先答案一定是最大值的约数&#xff0c;这些数不多我们可以枚举这些数xxx。然后我们称xxx的倍数的…

[XSY3382] 专家系统(二分+线段树)

XSY3382 二分ccc&#xff0c;问题变成能否用一个长ccc宽ccc的矩形框住至少kkk个点。 二维数点问题考虑用扫描线解决。将所有点按照xxx从小到大排序。 枚举一段xxx坐标相差不超过ccc的点&#xff08;双指针推进&#xff09;&#xff0c;初始想法是根据这些点的yyy值建一棵权值…

关于.NET Core是否应该支持WCF Hosting的争论

本文要点本文试图回答“.NET Core 是否应该支持 Windows 通信基础&#xff08;WCF&#xff09; Hosting&#xff1f;”的问题&#xff1b;支持者论据&#xff1a;许多工程师喜欢把 WCF 作为一种编程模型&#xff0c;不希望因为迁移到 .NET Core 而产生&#xff08;机会成本&…

战争尾声(nowcoder 215073)

战争尾声 nowcoder 215073 题目大意 在平面直角坐标系&#xff08;x,y范围均为1~200&#xff09;上&#xff0c;给你n个点&#xff0c;让你找到一个点&#xff0c;使其到所有点直线距离相等&#xff08;答案坐标均为整数&#xff09; 输入样例#1 2 1 2 2 1输出样例#1 1 1…

HDU1269 迷宫城堡(模板题)

HDU1269 迷宫城堡 文章目录Problem Description题解&#xff1a;Problem Description 为了训练小希的方向感&#xff0c;Gardon建立了一座大城堡&#xff0c;里面有N个房间(N<10000)和M条通道(M<100000)&#xff0c;每个通道都是单向的&#xff0c;就是说若称某通道连通…

照看小猫(nowcoder 217602)

照看小猫 nowcoder 217602 题目大意 有n只小猫&#xff0c;对于第i只小猫&#xff0c;给它取一个以小写字母组成的名字&#xff08;长度不大于aia_iai​&#xff09;&#xff0c;问你使所有小猫名字不同的方案数 样例#1 输入样例#1 1 1输出样例#1 26样例解释#1 猫咪的名…

AT3955-[AGC023D]Go Home【结论,递归】

正题 题目链接:https://www.luogu.com.cn/problem/AT3955 题目大意 nnn个房子在一个坐标轴上&#xff0c;第iii个有pip_ipi​个人在位置xix_ixi​&#xff0c;开始所有人都在一辆在位置sss的车上&#xff0c;每一时刻&#xff0c;每个人都会投票决定车的走向&#xff0c;票多的…

[XSY3383]多线程(笛卡尔树,DP)

%%%tjytjytjy的笛卡尔树做法&#xff1a; 设dp(l,r,Amin,Bmin)dp(l,r,Amin,Bmin)dp(l,r,Amin,Bmin)为把c[l],c[l1],...,c[r]c[l],c[l1],...,c[r]c[l],c[l1],...,c[r]划到A,BA,BA,B两线程中&#xff0c;且划到AAA线程的数>Amin>Amin>Amin&#xff0c;划到BBB线程的数&…