YBTOJ洛谷P3750:分手是祝愿(期望dp)

传送门

文章目录

  • 解析
  • 代码

解析

首先,开关开关两次等于没动,所有对于一个解来说,开关的状态只有开与不开之分
接下来的一个关键点是:每一个开关的效果无法被其他开关操作的组合代替
所以这个题应该只有唯一解

那么我们可以不计代价,只要考虑怎么搞出这个解就行了
因为一个开关只能影响因数,所以从大到小考虑遇见亮的灯无脑关就一定可以完成任务
既然唯一解,那么这个解就是它了

那么我们找出了这个解需要的操作数,记为cnt
那么显然的是,cnt<=k时,期望就是cnt

接下来考虑cnt>k的情况
设计dp:

f[i]表示**从剩i个灯要操作转移到(i-1)个灯要操作的期望步数

考虑下一步,有i/n的概率选到对的灯,(n-i)/n的概率选错,需要回到(i+1)的状态
那么可以得到
fi=i/n∗1+(n−i)/n∗(f[i+1]+fi+1)f_i=i/n*1+(n-i)/n*(f[i+1]+f_i+1)fi=i/n1+(ni)/n(f[i+1]+fi+1)
移项整理一下,得到:
fi=(n+(n−i)∗f[i+1])/if_i=(n+(n-i)*f[i+1])/ifi=(n+(ni)f[i+1])/i

统计答案从fk+1加到fcnt即可
最后再+k

不要忘了阶乘!

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e5+100;
const int mod=100003;
ll read(){ll x=0,f=1;char c=getchar();while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}while(isdigit(c)){x=x*10+c-'0';c=getchar();}return x*f;
}
int n,m,k,cnt;
int op[N];
ll f[N];
void work(int x){int top=floor(sqrt(x));for(int i=1;i<=top;i++){if(x%i==0){op[i]^=1;if(x/i!=i) op[x/i]^=1;}}
}
void Mod(double &x){x-=mod*(floor(x/mod));
}
ll ksm(ll x,int k){ll res=1;while(k){if(k&1) res=res*x%mod;x=x*x%mod;k>>=1;}return res;
}
int main(){n=read();k=read();for(int i=1;i<=n;i++) op[i]=read();for(int i=n;i>=1;i--){if(op[i]){work(i);cnt++;}}f[n]=1;for(int i=n-1;i>k;i--){f[i]=(n+1ll*(n-i)*f[i+1]%mod)*ksm(i,mod-2)%mod;//Mod(f[i]);}ll res=0;if(cnt<=k) res=cnt;else{for(int i=cnt;i>k;i--){res=(res+f[i])%mod; }res+=k;}for(int i=1;i<=n;i++){res=res*i%mod;//assert(jc>=0);}printf("%lld",res);
}
/*
3
1 3 4 5
1 4 7 3
9 3 2 2
*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/318109.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用ABP只要加人即可马上加快项目进展(二) - 分工篇 - BDD实战篇 - .NET Core里跑Specflow...

这是<如何用ABP框架快速完成项目 >系列中的一篇文章。BDD很赞&#xff01;比TDD先进很多&#xff0c;能够大大提高编码效率。上一篇文章说了如何在.NET Core里安装Specflow. 然而文章成果只到了hello world级别。要想真的和实际业务结合&#xff0c;比如要能够IOC new cl…

【做题记录】CodeForces 做题记录

链接放的是洛谷上的链接&#xff0c;难度就是 CF 上的评分。 <details><summary>$\texttt{solution}$</summary></details> CF10D LCIS 难度&#xff1a;\(\tt{2800}\) 求两个串的最长公共上升子序列。\(n\le 500\) $\texttt{solution}$ 严重虚高题&am…

周末狂欢赛2(冒泡排序,概率充电器,不勤劳的图书管理员)

狂欢2T1&#xff1a;冒泡排序题目题解CODET2&#xff1a;概率充电器题目题解CODET3&#xff1a;不勤劳的图书管理员题目题解CODE我不这么认为。。。。 T1&#xff1a;冒泡排序 题目 下面是一段实现冒泡排序算法的 C代码&#xff1a; for(int i1; i<n; i)for(int j1; j&l…

P5659-[CSP-S2019]树上的数【贪心】

正题 题目链接:https://www.luogu.com.cn/problem/P5659 题目大意 给出nnn个点的一棵树&#xff0c;每个节点上有一个数字&#xff0c;你每次可以选择一条边删除然后交换连接的两个点的数字&#xff0c;在删完所有数字后设pip_ipi​表示数字iii所在节点编号&#xff0c;要求使…

Mine Sweeper II

Mine Sweeper II 题意&#xff1a; 给你两个大小为 n * m 的扫雷图 A, B&#xff0c;要求通过最多 n * m/2 次转换&#xff08;转换指 把一个不是雷的格子变成雷&#xff0c; 或者把一个是雷的格子变成空白格&#xff09;&#xff0c;使得 B图的值 和 A图的值相等&#xff08…

YBTOJ洛谷P3195:玩具装箱(斜率优化dp)

传送门 文章目录前言解析代码前言 斜率优化dp&#xff0c;就是利用斜率优化的dp &#xff08;逃&#xff09; 解析 第一道斜优的题 分析题目 设sumisum_isumi​为1-i的c的前缀和 容易写出dp转移式&#xff1a; dpimin(dpj(sumi−sumji−j−1−L)2)dp_imin(dp_j(sum_i-sum_ji-…

01.微服务系列介绍

微服务系列实践 .NET CORE在开始之前呢&#xff0c;还是得废话一下&#xff0c;毕竟还是需要介绍一下这个系列我们要实现什么样的一套服务架构&#xff0c;也让大家能初步的有一个了解&#xff0c;后续实践起来也有一个完整的概念&#xff0c;相对也会容易的多。互联网架构演变…

【做题记录】Atcoder 做题记录

链接放的是洛谷上的链接。 <details><summary>$\texttt{solution}$</summary></details> ARC083F \(n\times n\) 的正方形上有 \(2n\) 个小球&#xff0c;第 \(i\) 个在 \((x_i,y_i)\)。 有 \(n\) 个 A 类机器人&#xff0c;第 \(i\) 个在 \((0,i)\)&a…

Walker

Walker 题意&#xff1a; 一个区间[0,n]&#xff0c;区间上有两个点&#xff0c;坐标分别是pos1&#xff0c;pos2&#xff0c;速度分别是v1&#xff0c;v2&#xff0c;这两个点是在移动&#xff0c;可以随时改变移动方向&#xff0c;问当区间的每一块均被一个点或两个点移动覆…

P7078-[CSP-S2020]贪吃蛇【贪心,队列】

正题 题目链接:https://www.luogu.com.cn/problem/P7078 题目大意 有nnn条贪吃蛇&#xff0c;第iii条长度为aia_iai​&#xff0c;每次最长的那条蛇可以选择吃掉最短的那条蛇&#xff0c;然后自己的长度减去其长度&#xff0c;也可以不吃然后结束游戏。 现在询问在所有蛇都希…

【网络流】最大流问题(EK算法带模板,Dinic算法带模板及弧优化,ISAP算法带模板及弧优化)上下界网络流

本blog重点是代码网络流的相关概念流网络(flow network)流(flow)网络的流残留网络(residual network)增广路径(augmenting path)Edmonds-Karp算法思想bfs模板调用EK&更新残留网络流模板luogu的AC代码(EK版)Dinic算法思路时间复杂度证明bfs模板模板1模板2dfs模板不带弧优化模…

YBTOJ:消除格子(二分图匹配)

文章目录题目描述解析代码题目描述 在一个n*n的矩阵中&#xff0c;有 k个格子中有杂物&#xff0c;现在你有一种能力&#xff0c;一次可以消除一行或一列格子中的杂物&#xff0c;问你至少需要几次可以将这些杂物全部消完。 解析 看起来像是网络流&#xff0c;结果竟然是二分图…

Rainbond 5.0正式发布, 支持对接管理已有Kubernetes集群

今天很高兴的向大家宣布Rainbond v5.0正式发布&#xff0c;Rainbond是开源的企业应用云操作系统&#xff0c;支撑企业应用的开发、架构、交付和运维的全流程&#xff0c;通过无侵入架构&#xff0c;无缝衔接各类企业应用&#xff0c;底层资源可以对接和管理IaaS、虚拟机和物理服…

【做题记录】P4211 [LNOI2014]LCA

P4211 [LNOI2014]LCA 题意 给出一个 \(n\) 个节点的有根树(编号为 \(0\) 到 \(n-1\)&#xff0c;根节点为 \(0\))。 一个点的深度定义为这个节点到根的距离 \(1\)。 设 \(dep[i]\) 表示点 \(i\) 的深度&#xff0c;\(LCA(i,j)\) 表示 \(i\) 与 \(j\) 的最近公共祖先。 有 \(m\)…

Fibonacci

Fibonacci 题意&#xff1a; f[i]表示第i位的斐波那契数列 给定n&#xff0c;求 题解&#xff1a; 这种题一开始没什么思路&#xff0c;那么枚举就行 g(x,y) 1 是当x * y为偶数时 x * y为偶数说明&#xff1a; x是偶数&#xff0c;y也是偶数 x是奇数&#xff0c;y是偶数 而…

P4383-[八省联考2018]林克卡特树【wqs二分,树形dp】

正题 题目链接:https://www.luogu.com.cn/problem/P4383 题目大意 nnn个点的一棵树&#xff0c;要求删除kkk条边然后接上kkk条边权为000的边后形成的树上选择一对(p,q)(p,q)(p,q)从ppp走简单路径到qqq的权值和最大。 n,k≤3105n,k\leq 3\times 10^5n,k≤3105 解题思路 其实可…

YBTOJ:幻灯片(二分图匹配)

文章目录题目描述数据范围解析解析题目描述 有一堆透明的幻灯片堆叠在一起&#xff0c;每个幻灯片上的随机一个位置会有幻灯片的标号。 因为幻灯片是透明的&#xff0c;所以堆叠在一起的幻灯片使得这些标号分不清各自对应的幻灯片。 现在要求你求出那些能够确定对应关系的幻灯片…

基于.NET Standard的分布式自增ID算法--美团点评LeafSegment

概述前一篇文章讲述了最流行的分布式ID生成算法snowflake&#xff0c;本篇文章根据美团点评分布式ID生成系统文章&#xff0c;介绍另一种相对更容易理解和编写的分布式ID生成方式。实现原理Leaf这个名字是来自德国哲学家、数学家莱布尼茨的一句话&#xff1a;There are no two …

Normal Data Structure Tricks

放一些比较常见的数据结构处理技巧&#xff0c;会一点一点补上来。 P3313 [SDOI2014]旅行 给你一个 \(10^5\) 长的序列&#xff0c;每个点有颜色 \(c\) 和权值 \(v\)。 有修改和查询操作&#xff0c;修改可以为修改一个点的颜色或权值&#xff0c;查询一段区间内颜色为 \(c\) 的…

[费用流专题]Going Home,Minimum Cost,工作安排

文章目录T1&#xff1a;Going Home题目题解CODET2&#xff1a;Minimum Cost题目题解CODET3&#xff1a;工作安排题解CODET1&#xff1a;Going Home 题目 On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, e…