文章目录
- A - Your First Judge
- B - log2(N)
- C - One More aab aba baa
- D - Coprime 2
- E - Chain Contestant
- F - Dist Max 2
- G - Colorful Candies 2
atcoder题目链接
A - Your First Judge
签到题
#include <cstdio>
#include <iostream>
using namespace std;
string s;
int main() {cin >> s;if( s == "Hello,World!" ) printf( "AC\n" );else printf("WA\n" );return 0;
}
B - log2(N)
签到题
#include <cstdio>
int main() {long long n;scanf( "%lld", &n );int ans;for( int i = 0;;i ++ ) {if( ( 1ll << i ) <= n ) ans = i;else break;}printf( "%d", ans );return 0;
}
C - One More aab aba baa
离散化后压成整数搜索,简单题
#include <stack>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
stack < char > sta;
char s[10], rnk[10];
int t[40325], used[30];
bool vis[10];
int n, k, cnt, tot;void dfs( int x, int val ) {if( x > n ) {t[++ cnt] = val;return;}for( int i = 1;i <= n;i ++ )if( vis[i] ) continue;else {vis[i] = 1;dfs( x + 1, val * 10 + used[s[i] - 'a' + 1] );vis[i] = 0;}
}int main() {scanf( "%s %d", s + 1, &k );n = strlen( s + 1 );for( char i = 'a';i <= 'z';i ++ )for( int j = 1;j <= n;j ++ )if( s[j] == i ) {used[i - 'a' + 1] = ++ tot, rnk[tot] = i;break;}dfs( 1, 0 );sort( t + 1, t + cnt + 1 );cnt = unique( t + 1, t + cnt + 1 ) - t - 1;while( t[k] ) sta.push( rnk[t[k] % 10] ), t[k] /= 10;while( ! sta.empty() ) printf( "%c", sta.top() ), sta.pop();return 0;
}
D - Coprime 2
质因数分解后,把质因数的倍数都筛掉,简单题
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
#define maxn 100005
vector < int > ans;
int cnt;
bool vis[maxn], is[maxn];
int prime[maxn];void init( int n ) {for( int i = 2;i <= n;i ++ ) {if( ! vis[i] ) is[i] = 1, prime[++ cnt] = i;for( int j = 1;j <= cnt && i * prime[j] <= n;j ++ ) {vis[i * prime[j]] = 1;if( i % prime[j] == 0 ) break;}}
}int n, m;
int a[maxn], p[maxn * 100];int main() {init( 1e5 );scanf( "%d %d", &n, &m );for( int i = 1;i <= n;i ++ )scanf( "%d", &a[i] );cnt = 0;for( int i = 1;i <= n;i ++ ) {for( int j = 1;j * j <= a[i];j ++ )if( a[i] % j == 0 ) {if( is[j] ) p[++ cnt] = j;if( is[a[i] / j] ) p[++ cnt] = a[i] / j;}}for( int i = 1;i <= m;i ++ ) vis[i] = 0;sort( p + 1, p + cnt + 1 );cnt = unique( p + 1, p + cnt + 1 ) - p - 1;for( int i = 1;i <= cnt;i ++ )for( int j = p[i];j <= m;j += p[i] )vis[j] = 1;for( int i = 1;i <= m;i ++ )if( ! vis[i] ) ans.push_back( i );printf( "%d\n", ans.size() );for( int i = 0;i < ans.size();i ++ )printf( "%d\n", ans[i] );return 0;
}
E - Chain Contestant
只有101010种,符合状压
dpi,s,j:dp_{i,s,j}:dpi,s,j: 到iii为止出现字符的状态为sss,上一次出现的字符为jjj(多加一种字符表示空)
-
不选iii
dpi,s,j+=dp[i−1][s][j]dp_{i,s,j}+=dp[i-1][s][j]dpi,s,j+=dp[i−1][s][j]
-
选iii,必须满足iii位置字符没出现过或上一次出现字符就是iii位置字符
dp[i][1<<t[i]∣s][t[i]]+=dp[i][1<<t[i]∣s][t[i]]+dp[i−1][s][j]dp[i][1 << t[i] | s][t[i]]+=dp[i][1 << t[i] | s][t[i]] + dp[i - 1][s][j]dp[i][1<<t[i]∣s][t[i]]+=dp[i][1<<t[i]∣s][t[i]]+dp[i−1][s][j]
简单题
#include <cstdio>
#define int long long
#define mod 998244353
#define maxn 1002
#define S 1 << 10
int n;
char s[maxn];
int t[maxn];
int dp[maxn][S][11];signed main() {scanf( "%lld %s", &n, s + 1 );for( int i = 1;i <= n;i ++ ) t[i] = s[i] - 'A';dp[0][0][10] = 1;for( int i = 1;i <= n;i ++ )for( int sta = 0;sta < S;sta ++ )for( int j = 0;j <= 10;j ++ )if( ! dp[i - 1][sta][j] ) continue;else {dp[i][sta][j] = ( dp[i][sta][j] + dp[i - 1][sta][j] ) % mod;if( j == 10 ) dp[i][1 << t[i] | sta][t[i]] = ( dp[i][1 << t[i] | sta][t[i]] + dp[i - 1][sta][j] ) % mod;else if( ( 1 << t[i] & sta ) and j != t[i] ) continue;elsedp[i][1 << t[i] | sta][t[i]] = ( dp[i][1 << t[i] | sta][t[i]] + dp[i - 1][sta][j] ) % mod;}int ans = 0;for( int i = 0;i < S;i ++ )for( int j = 0;j <= 10;j ++ )if( i == 0 && j == 10 ) continue;else ans = ( ans + dp[n][i][j] ) % mod;printf( "%lld\n", ans );return 0;
}
F - Dist Max 2
二分答案
将点按xxx坐标排序
类似滑动窗口模拟
记录在满足xxx坐标情况下的最大最小yyy,判断是否有满足与现在枚举iii的yyy距离不小于二分答案
简单题
#include <queue>
#include <cstdio>
#include <algorithm>
using namespace std;
#define maxn 200005
struct node { int x, y; }p[maxn];
queue < node > q;
int n;int main() {scanf( "%d", &n );for( int i = 1;i <= n;i ++ ) scanf( "%d %d", &p[i].x, &p[i].y );sort( p + 1, p + n + 1, []( node s, node t ) { return s.x < t.x; } );int l = 0, r = 1e9, ans;next :while( l <= r ) {int mid = l + r >> 1;while( ! q.empty() ) q.pop();int Min = 1e9, Max = 0;for( int i = 1;i <= n;i ++ ) {while( ! q.empty() ) {if( q.front().x > p[i].x - mid ) break;Min = min( Min, q.front().y );Max = max( Max, q.front().y );q.pop();}if( Min <= p[i].y - mid or Max >= p[i].y + mid ) {ans = mid, l = mid + 1;goto next;}q.push( p[i] );}r = mid - 1;}printf( "%d\n", ans );return 0;
}
G - Colorful Candies 2
中档题
令CCC表示不同的糖果颜色数,将NNN颗糖果重新离散化颜色1,2,...,C
显然答案与具体糖果的颜色无关,只与每种颜色的个数有关,令nin_ini表示颜色为iii的糖果个数
枚举每一轮要选择的糖果个数KKK
对于每一种颜色,定义XiX_iXi,若选择糖果种有iii颜色,Xi=1X_i=1Xi=1,否则Xi=0X_i=0Xi=0
则KKK糖果中不同颜色种数可以表示为∑i=1CXi\sum_{i=1}^CX_i∑i=1CXi
所求期望为E[∑i=1CXi]E\Big[\sum_{i=1}^CX_i\Big]E[∑i=1CXi],根据期望的线性可加性知道=∑i=1CE[Xi]=\sum_{i=1}^CE\Big[X_i\Big]=∑i=1CE[Xi]
一个颜色出现的期望很简单,出现的方案数///总方案数,出现的方案数===总方案数−-−一次都没出现
E[Xi]=(NK)−(N−niK)(NK)E\Big[X_i\Big]=\frac{\binom{N}{K}-\binom{N-n_i}{K}}{\binom{N}{K}} E[Xi]=(KN)(KN)−(KN−ni)
枚举iii又是O(n)O(n)O(n)的时间,再加上外层的KKK枚举,时间O(n2)O(n^2)O(n2)难以接受
发现其实如果有xxx种颜色的个数都是nin_ini,那么这xxx种颜色的期望可以O(1)O(1)O(1)计算
x∗(NK)−(N−niK)(NK)x*\frac{\binom{N}{K}-\binom{N-n_i}{K}}{\binom{N}{K}} x∗(KN)(KN)−(KN−ni)
那么不同个数就是ni=1,2,...,n_i=1,2,...,ni=1,2,...,,又要满足∑ni=N\sum n_i=N∑ni=N,所以可以知道上界就是根号级别ni=1,2,...,Nn_i=1,2,...,\sqrt Nni=1,2,...,N
#include <map>
#include <cstdio>
using namespace std;
#define int long long
#define mod 998244353
#define maxn 50005
map < int, int > color, cnt;
int fac[maxn], inv[maxn];
int n;int qkpow( int x, int y ) {int ans = 1;while( y ) {if( y & 1 ) ans = ans * x % mod;x = x * x % mod;y >>= 1;}return ans;
}void init() {fac[0] = inv[0] = 1;for( int i = 1;i <= n;i ++ ) fac[i] = fac[i - 1] * i % mod;inv[n] = qkpow( fac[n], mod - 2 );for( int i = n - 1;i;i -- ) inv[i] = inv[i + 1] * ( i + 1 ) % mod;
}int C( int n, int m ) {if( n < m ) return 0;else return fac[n] * inv[m] % mod * inv[n - m] % mod;
}signed main() {scanf( "%lld", &n );init();for( int i = 1, x;i <= n;i ++ ) {scanf( "%lld", &x );color[x] ++;//颜色x的出现次数 }for( auto it : color ) cnt[it.second] ++;//颜色出现次数为x的颜色个数for( int i = 1;i <= n;i ++ ) {int ans = 0;for( auto it : cnt ) ans = ( ans + ( C( n, i ) - C( n - it.first, i ) + mod ) % mod * it.second ) % mod;printf( "%lld\n", ans * qkpow( C( n, i ), mod - 2 ) % mod );}return 0;
}
后言:HHH就是FWTFWTFWT,atcoder-abc
很喜欢在最后考些鹅心算法模板,不想补了