Caddi Programming Contest 2021(AtCoder Beginner Contest 193)
A - Discount
打折浮点数除即可
B - Play Snuke
枚举判断符合要求的求最小值即可
C - Unexpressed
O(n)O(\sqrt{n})O(n)枚举aaa,暴力翻倍(最小的222最多乘323232次就会超过nnn的上限)
mapmapmap存该数有没有被aba^bab覆盖到,数量不会太多,不用担心MLEMLEMLE
D - Poker
暴力枚举,计算情况。注意两个串选择同一数字时的小细节即可
#include <cstdio>
#include <cmath>
#define int long long
#define maxn 20
int n;
char s[maxn], t[maxn];
int tot[maxn], cnt_s[maxn], cnt_t[maxn];int calc( int x ) {return x * ( x - 1 );
}signed main() {scanf( "%lld %s %s", &n, s + 1, t + 1 );for( int i = 1;i <= 4;i ++ )tot[s[i] - '0'] ++, tot[t[i] - '0'] ++;int cnt = 0;for( int i = 1;i <= 9;i ++ ) {if( tot[i] == n ) continue;for( int j = 1;j <= 9;j ++ ) {if( ( tot[j] == n ) || ( i == j && tot[i] + 1 == n ) ) continue;int sum_s = 0, sum_t = 0;s[5] = i + '0', t[5] = j + '0';for( int k = 1;k <= 5;k ++ )cnt_s[s[k] - '0'] ++, cnt_t[t[k] - '0'] ++;for( int k = 1;k <= 9;k ++ ) {sum_s += k * pow( 10, cnt_s[k] );sum_t += k * pow( 10, cnt_t[k] );}if( sum_s > sum_t ) {if( i == j )cnt += ( n - tot[i] ) * ( n - tot[i] - 1 );elsecnt += ( n - tot[i] ) * ( n - tot[j] );}for( int k = 1;k <= 9;k ++ )cnt_s[k] = cnt_t[k] = 0;}}printf( "%.10f\n", cnt * 1.0 / ( calc( 9 * n - 8 ) ) );return 0;
}
E - Oversleeping
发现每段差都在500以内,暴力枚举相遇点
k1∗(2X+2Y)+X+i=k2∗(P+Q)+P+j⇔k1∗(2X+2Y)−k2∗(P+Q)=P−X+j−ik_1*(2X+2Y)+X+i=k_2*(P+Q)+P+j \Leftrightarrow k_1*(2X+2Y)-k_2*(P+Q)=P-X+j-ik1∗(2X+2Y)+X+i=k2∗(P+Q)+P+j⇔k1∗(2X+2Y)−k2∗(P+Q)=P−X+j−i
即扩欧,k1′(2X+2Y)+k2′(P+Q)=gcd(2X+2Y,P+Q)k_1'(2X+2Y)+k_2'(P+Q)=gcd(2X+2Y,P+Q)k1′(2X+2Y)+k2′(P+Q)=gcd(2X+2Y,P+Q)
有解必须满足gcd(2X+2Y,P+Q)∣P−X+j−igcd(2X+2Y,P+Q)|P-X+j-igcd(2X+2Y,P+Q)∣P−X+j−i
扩欧求出的解不一定是非负最优解,扩倍(乘对方的倍数)成非负再取模变最优
#include <cstdio>
#include <iostream>
using namespace std;
#define int __int128
int T, X, Y, P, Q;void read( int &x ) {x = 0; char s = getchar();while( s < '0' || s > '9' ) s = getchar();while( '0' <= s && s <= '9' ) {x = ( x << 1 ) + ( x << 3 ) + ( s ^ 48 );s = getchar();}
}void exgcd( int a, int b, int &d, int &x, int &y ) {if( ! b ) d = a, x = 1, y = 0;else {exgcd( b, a % b, d, y, x );y -= x * ( a / b );}
}void print( int x ) {if( x > 9 ) print( x / 10 );putchar( ( x % 10 ) + '0' );
}signed main() {read( T );while( T -- ) {read( X ), read( Y ), read( P ), read( Q );int d, x, y, ans = 1e32;exgcd( X * 2 + Y * 2, P + Q, d, x, y );for( int i = 0;i < Y;i ++ )for( int j = 0;j < Q;j ++ ) {int c = P + j - X - i;if( c % d ) continue;int k1 = c / d * x;int k2 = c / d * ( - y );int mod1 = ( P + Q ) / d, mod2 = ( X * 2 + Y * 2 ) / d;if( k1 < 0 ) {int t = ( - k1 + mod1 - 1 ) / mod1;k1 += mod1 * t, k2 += mod2 * t;}if( k2 < 0 ) {int t = ( - k2 + mod2 - 1 ) / mod2;k1 += mod1 * t, k2 += mod2 * t;}k1 %= mod1;ans = min( ans, k1 * ( X * 2 + Y * 2 ) + X + i );}if( ans == 1e32 ) printf( "infinity\n" );else print( ans ), putchar( '\n' );}return 0;
}
F - Zebraness
一般的这种相邻之间计算贡献都可以转换成最小割问题,考虑整体边数减去最小失去
如果相邻两个点是一样的颜色,则失去111
但是这样根本无法在网络流上进行切割
所以考虑奇偶分开,天然分裂相邻块
翻转奇数块颜色,进行连边;固定颜色的最大可以流出444,至于不确定的就根据相邻边选择
按颜色分给超级源点和超级汇点,大约是在O(n3)O(n^3)O(n3)
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define maxn 105
#define inf 0x7f7f7f7f
struct node {int v, nxt, flow;
}edge[maxn * maxn * 30];
int n, cnt, s, t;
char ch[maxn][maxn];
int head[maxn * maxn], cur[maxn * maxn], dis[maxn * maxn];
queue < int > q;void addEdge( int u, int v, int c ) {edge[cnt].v = v;edge[cnt].nxt = head[u];edge[cnt].flow = c;head[u] = cnt ++;edge[cnt].v = u;edge[cnt].nxt = head[v];edge[cnt].flow = 0;head[v] = cnt ++;
}int id( int i, int j ) {return ( i - 1 ) * n + j;
}bool bfs() {memset( dis, 0, sizeof( dis ) );memcpy( cur, head, sizeof( head ) );dis[s] = 1; q.push( s );while( ! q.empty() ) {int u = q.front(); q.pop();for( int i = head[u];~ i;i = edge[i].nxt ) {int v = edge[i].v;if( ! dis[v] && edge[i].flow ) {dis[v] = dis[u] + 1;q.push( v );}}}return dis[t];
}int dfs( int u, int cap ) {if( u == t || ! cap ) return cap;int flow = 0;for( int i = cur[u];~ i;i = edge[i].nxt ) {int v = edge[i].v; cur[u] = i;if( dis[v] == dis[u] + 1 ) {int w = dfs( v, min( cap, edge[i].flow ) );if( ! w ) continue;cap -= w;flow += w;edge[i].flow -= w;edge[i ^ 1].flow += w;if( ! cap ) break;}}return flow;
}int dinic() {int ans = 0;while( bfs() ) ans += dfs( s, inf );return ans;
}int main() {memset( head, -1, sizeof( head ) );scanf( "%d", &n );for( int i = 1;i <= n;i ++ )scanf( "%s", ch[i] + 1 );for( int i = 1;i <= n;i ++ )for( int j = 1;j <= n;j ++ )if( ! ( ( i + j ) & 1 ) || ch[i][j] == '?' ) continue;else ch[i][j] = 'B' + 'W' - ch[i][j];s = 0, t = n * n + 1;for( int i = 1;i <= n;i ++ )for( int j = 1;j <= n;j ++ ) {if( ch[i][j] == 'B' ) addEdge( s, id( i, j ), 4 );if( ch[i][j] == 'W' ) addEdge( id( i, j ), t, 4 );}for( int i = 1;i <= n;i ++ )for( int j = 1;j < n;j ++ ) {addEdge( id( i, j ), id( i, j + 1 ), 1 );addEdge( id( i, j + 1 ), id( i, j ), 1 );}for( int i = 1;i < n;i ++ )for( int j = 1;j <= n;j ++ ) {addEdge( id( i, j ), id( i + 1, j ), 1 );addEdge( id( i + 1, j ), id( i, j ), 1 );}printf( "%d\n", 2 * n * ( n - 1 ) - dinic() );return 0;
}