[NOI Online 2022 提高组] 讨论(巧妙的切入方式)

problem

luogu-P8252

solution

本题最难处理的就是两个人会做的题目集合是包含关系的限制。

将所有人按会做的题数从大到小排序。

然后枚举 iii,只要这个人和之前某个人存在有至少一道公共的题目,并且保证这个人有新的题目,那么这两个人就可以讨论。

lstx:lst_x:lstx: 当前枚举到的人种最后一个会做第 xxx 道题的人的编号。

再枚举 iii 会做的题目 ppp

那么我们就可以知道 lstplst_plstpiii 是有会做的题目重合的。

  • 如果 lstplst_plstp 为空,即 iii 是目前为止第一个会做 ppp 题的人。

    这种情况就比较简单,我们只需要直接找一个和 iii 有题目交集的人即可。

    因为排序,所以这个人会做的题数一定不小于 iiiiii 有新题,则这个人必然也有新题。

现在的问题是要求 lstplst_plstp 这个人会做的题目集合不能完全包含 iii 会做的题目集合。

我们不妨先把这个人 lstplst_plstp 记录下来,用 xxx 暂记。

继续枚举题目,又找到了一个 lstplst_plstp,如果这个 lstp≠xlst_p\ne xlstp=x,我们就再记录下来,用 yyy 暂记。

此时我们至少有了两个不同的人,都满足和 iii 有题目交集。

我们直接让 x,yx,yx,y 两个人中题目数多的人变成 iii,然后输出 x,yx,yx,y 存储的编号。

假设 xxx 会做的题目数比 yyy 多。那么 i,yi,yi,y 一定有题目交集,并且存在有 iii 会做的题目 yyy 不会。

因为这道题是 xxx 会,根据 lstlstlst 数组的定义。x,yx,yx,y 既然是不同的,那么这两个人就有彼此不会做的题目

(当然可能这两个人也可以讨论,但也可能这两个会做的题目完全无交集)

可以多思考一下,我觉得这道题非常巧妙之处就在于这里!👍

code

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000005
int k[maxn], id[maxn], lst[maxn];
vector < int > G[maxn];
int T, n;void read( int &x ) {x = 0; char s = getchar();while( s < '0' or s > '9' ) s = getchar();while( '0' <= s and s <= '9' ) {x = (x << 1) + (x << 3) + (s ^ 48);s = getchar();}
}signed main() {read( T );while( T -- ) {read( n );memset( lst, 0, sizeof( lst ) );for( int i = 1;i <= n;i ++ ) G[i].clear();for( int i = 1;i <= n;i ++ ) {read( k[i] );for( int j = 1, x;j <= k[i];j ++ ) {read( x );G[i].push_back( x );}}iota( id + 1, id + n + 1, 1 );sort( id + 1, id + n + 1, []( int x, int y ) { return k[x] > k[y]; } );int now, x, y;for( int i = 1;i <= n;i ++ ) {now = id[i]; x = y = 0;for( int j : G[now] ) {int p = lst[j]; lst[j] = now;if( ! p ) p = now;if( ! x ) x = p;else if( x ^ p ) y = p;if( x and y ) goto yes;}}puts("NO");continue;yes : if( x ^ now and y ^ now ) {if( k[x] > k[y] ) x = now;else y = now;}printf( "YES\n%d %d\n", x, y );}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316331.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P4149 [IOI2011]Race

P4149 [IOI2011]Race 题意&#xff1a; 给一棵树&#xff0c;每条边有权。求一条简单路径&#xff0c;权值和等于 k&#xff0c;且边的数量最小。 题解&#xff1a; 用t[i]:长度为i的路径包含的最少边数 按照子树顺序&#xff0c;依次用dep[u]t[K-d[u]]更新ans&#xff0c;…

将传统 WPF 程序迁移到 DotNetCore 3.0

介绍由于历史原因&#xff0c;基于 Windows 平台存在着大量的基于 .NetFramework 开发的 WPF 和 WinForm 相关程序&#xff0c;如果将这些程序全部基于 DotNetCore 3.0 重写一遍显然是不现实的&#xff0c;但是 DotNetCore 是未来发展的趋势。所以本文通过以 WPF 为例&#xff…

[CodeForces 1603C] Extreme Extension(贪心 + 数论分块优化dp)

problem CodeForces solution observation1:\text{observation1}:observation1: 对于一个非空子段 [l,r][l,r][l,r]&#xff0c;最后一个元素 ara_rar​ 一定不会被操作。 observation2:\text{observation2}:observation2: 基于上一条进一步地有&#xff0c;对于一个非空子段…

.NET Core 时代已经到了,你准备好了吗

今天很多人都收到了阿里云函数计算支持.NET Core的短信了。通过访问 https://help.aliyun.com/document_detail/112379.html 你可以看到最新的说明。现在和过去的两年不同&#xff0c;因为最恶劣的时期已经过去&#xff0c;经历过了最黑暗的时刻&#xff0c;我们正在走向光明的…

cf600 E. Lomsat gelral

cf600 E. Lomsat gelral 题意&#xff1a; 给出一个树&#xff0c;求出每个节点的子树中出现次数最多的颜色的编号和 题解&#xff1a; 树上启发式合并 树上启发式合并讲解 其实就是&#xff1a;递归轻儿子&#xff0c;消除影响&#xff0c;递归重儿子&#xff0c;不消除影…

ASP.NET Core appsettings.json文件(9)《从零开始学ASP.NET CORE MVC》:

本文出自《从零开始学ASP.NET CORE MVC》推荐文章&#xff1a;ASP.NET Core launchsettings.json文件ASP.NET Core appsettings.json文件在本视频中&#xff0c;我们将讨论ASP.NET Core 项目中appsettings.json文件的重要性。在以前的ASP.NET版本中&#xff0c;我们将应用程序配…

[CQOI2018] 交错序列(矩阵加速优化dp)

problem luogu-P4456 solution 预处理阶乘和阶乘的逆元&#xff0c;枚举 111 出现次数 iii&#xff0c;∑(n−i1i)(n−i)aib\sum\binom{n-i1}{i}(n-i)^ai^b∑(in−i1​)(n−i)aib。 (n−i1i)\binom{n-i1}{i}(in−i1​) 如何推出来? 从 nnn 个中选 iii 个 (ni)\binom ni(in​…

P4245 【模板】任意模数多项式乘法(NTT)

题意&#xff1a; P4245 【模板】任意模数多项式乘法 题解&#xff1a; NTT模板&#xff0c;记录一下 代码&#xff1a; #include <bits/stdc.h>using namespace std;#define REP(i, a, b) for (int i (a), _end_ (b); i < _end_; i) #define debug(...) fprintf…

在Windows上使用Docker运行.NetCore

今天我们来说下如何在windows下使用docker运行.net core&#xff0c;既然是docker&#xff0c;那么我们首先得在windows上安装docker。在Windows安装 docker 有两种选择 &#xff1a;1、docker for windows2、docker toolbox 区别&#xff1a;docker for windows-64位Windows 1…

[AtCoder Educational DP Contest] J - Sushi(期望dp)

problem luogu 现有N(1≤N≤300)N(1 ≤ N ≤ 300)N(1≤N≤300) 个盘子&#xff0c;编号为1,2,3,…,N1,2,3,…,N1,2,3,…,N。 第 iii个盘中放有 ai(1≤ai≤3)a_i(1≤a_i ≤3)ai​(1≤ai​≤3)个寿司。 接下来每次执行以下操作&#xff0c;直至吃完所有的寿司。 从第 1,2,3,…

cf570 D. Tree Requests

cf570 D. Tree Requests 题意&#xff1a; 给定一个以 1 为根的 n 个结点的树&#xff0c;每个点上有一个字母&#xff08;a-z&#xff09;。每次询问 a, b 查询以 a 为根的子树内深度为 b 的结点上的字母重新排列之后是否能构成回文串。 题解&#xff1a; 回文串形成条件&…

浅谈C#在网络波动时防重复提交

前几天&#xff0c;公司数据库出现了两条相同的数据&#xff0c;而且时间相同&#xff08;毫秒也相同&#xff09;。排查原因&#xff0c;发现是网络波动造成了重复提交。由于网络波动而重复提交的例子也比较多&#xff1a;网络上&#xff0c;防重复提交的方法也很多&#xff0…

[AtCoder Educational DP Contest] V - Subtree(树形dp + 前缀积/后缀积)

problem luogu 给一棵树&#xff0c;对每一个节点染成黑色或白色。 对于每一个节点&#xff0c;求强制把这个节点染成黑色的情况下&#xff0c;所有的黑色节点组成一个联通块的染色方案数&#xff0c;答案对 MMM 取模。 1≤n≤1e5,2≤M≤1e91\le n\le 1e5,2\le M\le 1e91≤n…

P2634 [国家集训队]聪聪可可(点分治做法)

P2634 [国家集训队]聪聪可可 题意&#xff1a; 一颗n个点的树&#xff0c;问其中两点之间的边上数的和加起来是3的倍数的点对有多少个&#xff1f; 输出这样的点对所占比例 题解&#xff1a; 因为是求三的倍数&#xff0c;我们num来记录%30&#xff0c;1&#xff0c;2的数量…

C#并行编程(4):基于任务的并行

C#中的任务Task在C#编程中&#xff0c;实现并行可以直接使用线程&#xff0c;但使用起来很繁琐&#xff1b;也可以使用线程池&#xff0c;线程池很大程度上简化了线程的使用&#xff0c;但是也有着一些局限&#xff0c;比如我们不知道作业什么时候完成&#xff0c;也取不到作业…

[AtCoder Educational DP Contest] W - Intervals(线段树优化dp)

problem 给定 mmm 条规则形如 (li,ri,ai)(l_i,r_i,a_i)(li​,ri​,ai​)&#xff0c;对于一个 01 串&#xff0c;其分数的定义是&#xff1a;对于第 iii 条规则&#xff0c;若该串在 [li,ri][l_i,r_i][li​,ri​] 中至少有一个 1&#xff0c;则该串的分数增加 aia_iai​。 你…

P2634 [国家集训队]聪聪可可(树形dp)

题意&#xff1a; 一颗n个点的树&#xff0c;问其中两点之间的边上数的和加起来是3的倍数的点对有多少个&#xff1f; 输出这样的点对所占比例 题解&#xff1a; 树形dp求解 因为是求长度为3的倍数&#xff0c;模3的结果只有0/1/2&#xff0c;我们可以单独考虑作为一维。 设…

.net core 注入中的三种模式:Singleton、Scoped 和 Transient

从上篇内容不如题的文章《.net core 并发下的线程安全问题》扩展认识.net core注入中的三种模式&#xff1a;Singleton、Scoped 和 Transient我们都知道在 Startup 的 ConfigureServices 可以注入我们想要的服务&#xff0c;那么在注入的时候有三种模式可以选择&#xff0c;那么…

[AtCoder Educational DP Contest] X - Tower(贪心 + dp)

problem luogu 你有 nnn 个箱子&#xff0c;编号从 1 到 n&#xff0c;每个箱子有三个属性&#xff0c;以第 iii 个箱子为例&#xff0c;分别是重量 wiw_iwi​&#xff0c;承重能力 sis_isi​&#xff0c;价值 viv_ivi​。 你想建一座塔&#xff0c;因此需要将一些箱子堆叠起…

P2634 [国家集训队]聪聪可可(树上启发式合并)

P2634 [国家集训队]聪聪可可&#xff08;树上启发式合并&#xff09; 题意&#xff1a; 一颗n个点的树&#xff0c;问其中两点之间的边上数的和加起来是3的倍数的点对有多少个&#xff1f; 输出这样的点对所占比例 题解&#xff1a; 没有修改&#xff0c;统计边长为3的倍数…