2019 ICPC World Finals Problem J. Miniature Golf
Solution
设lll为l0l_0l0时iii的总分为si,l0s_{i,l_0}si,l0,si,l0=∑kmin(ai,k,l0)s_{i,l_0}=\sum_k min(a_{i,k},l_0)si,l0=∑kmin(ai,k,l0),让lll从小到大依次变化,可以发现si,ls_{i,l}si,l表现为一个斜率非负的上凸壳(上凸壳的左边一半),Δl=si,l+1−si,l=∑k[ai,k>l]\Delta_l=s_{i,l+1}-s_{i,l}=\sum_k [a_{i,k}>l]Δl=si,l+1−si,l=∑k[ai,k>l],且至多有h+1h+1h+1条斜率不同的线段。
当两个凸壳i,ji,ji,j交于一点,且该点所处的两条线段斜率不同时,i,ji,ji,j之间的排名关系会发生变化,显而易见的是,两个h+1h+1h+1段上凸壳能找到O(h)O(h)O(h)个上述交点,因此我们只需要求出每个i,ji,ji,j交点和交点处i,ji,ji,j的排名变化,即可算出任意时刻某点排名。
具体的,我们把ai,1,ai,2...ai,ha_{i,1},a_{i,2}...a_{i,h}ai,1,ai,2...ai,h排序,然后对于每个i,ji,ji,j,求出ai,aja_i,a_jai,aj中的所有不同的值b1,b2,b3...bnb_1,b_2,b_3...b_nb1,b2,b3...bn,且令b0=0,bn+1=109b_0=0,b_{n+1}=10^9b0=0,bn+1=109,显然(bk,bk+1](b_k,b_{k+1}](bk,bk+1]这一段中的上述交点唯一,直接计算即可,时间复杂度为O(p2h)O(p^2h)O(p2h)。
最后把所有O(p2h)O(p^2h)O(p2h)个排名变化按时间排序统计最小值即可。
总时间复杂度O(p2hlogph)O(p^2h\;log\;ph)O(p2hlogph)。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=20005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
PR V[505][50005];
int a[505][55],b[50005],Num[505],num;
void add(int x) { if (b[num]==x) return; b[++num]=x; }
signed main()
{int n=read(),m=read();for (int i=1;i<=n;i++){for (int j=1;j<=m;j++) a[i][j]=read();sort(a[i]+1,a[i]+m+1);}for (int i=1;i<=n;i++)for (int j=i+1;j<=n;j++){int nw=1; b[num=1]=0;for (int k=1;k<=m;k++){while (nw<=m&&a[j][nw]<=a[i][k]) add(a[j][nw]),nw++;add(a[i][k]);}while (nw<=m) add(a[j][nw]),nw++;add(1000000000);ll x1=0,x2=0,s1=0,s2=0;for (int k=1;k<num;k++){while (x1<m&&a[i][x1+1]<=b[k]) x1++;while (x2<m&&a[j][x2+1]<=b[k]) x2++;if (x1>x2&&s1>=s2){ll t=(s1-s2-1)/(x1-x2)+1,p=(s1-s2)/(x1-x2)+1;if (p+b[k]<=b[k+1]) V[i][Num[i]++]=MP(b[k]+p,-1);if (s1!=s2&&t+b[k]<=b[k+1]) V[j][Num[j]++]=MP(b[k]+t,1);}else if (x1<x2&&s1<=s2){ll t=(s2-s1-1)/(x2-x1)+1,p=(s2-s1)/(x2-x1)+1;if (p+b[k]<=b[k+1]) V[j][Num[j]++]=MP(b[k]+p,-1);if (s1!=s2&&t+b[k]<=b[k+1]) V[i][Num[i]++]=MP(b[k]+t,1);}s1+=(m-x1)*(b[k+1]-b[k]),s2+=(m-x2)*(b[k+1]-b[k]);}}for (int i=1;i<=n;i++){sort(V[i],V[i]+Num[i]);int mn=n,nw=n;for (int j=0;j<Num[i];j++){nw+=V[i][j].se;if (V[i][j].fi!=V[i][j+1].fi) upmin(mn,nw);}printf("%d\n",mn);}return 0;
}